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Abstract

Quantum mechanics differential equations are based on the de Broglie

postulate. This paper presents the repercussions on quantum mechanics

differential equations when the de Broglie wavelength is replaced by a rela-

tion between the radius and the energy of a particle. This relation results

from the theoretical work [11] about the interaction of charged particles,

where the particles are modelled as focal points of rays of fundamental

particles with longitudinal and transversal angular momentum. Interac-

tion of subatomic particles is described as the interaction of the angular

momenta of their fundamental particles. Based on the finding that elec-

trons and positrons neither attract nor repel each other for the distance

between them tending to zero, and that protons are swarms of electrons

and positrons, the energy levels of the orbital electrons of the hydrogen are

explained with the number of positrons of the proton that interact with

the orbital electron. All four known forces are the result of electromagnetic

interactions, so that only QED is required to describe them. The potential

well of an atomic nucleus is shown with the regions that are responsible

for the four type of interactions defined in quantum mechanics. Also the

compatibility of the gravitation model derived in [11] with quantum me-

chanics is shown, model where gravitation is the result of the reintegration

of migrated electrons and positrons to their nuclei.
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1 Introduction.

Quantum mechanics differential equations are based on the de Broglie postulate. In

the theoretical work [3] about the interaction of charged particles, where particles are

represented by a non local model emitting and absorbing continuously fundamental

particles, a relation between the radius ro and the energy of a particle is derived.

ro =
~ c
E

with E =
√
E2

o + E2
p the relativistic energy. (1)

This relation is used instead of the de Broglie wavelength, to build wave packages

with a Gauss distribution, and to derive the corresponding probability differential

equations of quantum mechanics.

The effects on the uncertainty relations and the most important quantum mechanics

operators are presented.

Note: When deriving the wave-package with the radius-energy relation, the mass of

a particle is considered as concentrated in a sphere with a diameter equal approximately

to two times the radius ro given by the radius energy-relation. This is not according to

the approach that represents particles as Focal Points which led to the radius-energy

relation where the mass (energy) of a particle is distributed from ro to infinity, outside

the sphere with radius ro.

1.1 General considerations.

To make use of the of Fourier-Transformation, the movement of a particle is first

described as a sequence of particles represented by a sinus wave, having a wavelength

λ equal to 2πro. Then the Fourier-Transformation of a wave package of sinus waves

with a Gauss shaped amplitude is build.

We have that

λ = 2πro = 2π
~ c
Erel

with Erel =
√
E2

o + E2
p (2)

with

Eo = mo c
2 Ep = p c p =

mo v√
1− v2

c2

(3)

The sinus wave on the x-axis is

ξx = A ei(kx x−ωx t) with kx =
2π

λx
and ωx = 2π

vx
λx

(4)

If we now introduce in the expression that λx = 2πrox = 2π~c/Erelx we get
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ξx = A exp

[
i
c

~

(
Erelx

c2
x− vx

c2
Erelx t

)]
(5)

or

ξx = A exp

[
i
c

~

(
Erelx

c2
x− px t

)]
(6)

with

Erelx = mo c
2

(
1− v2x

c2

)−1/2

and px =
vx
c2
Erelx (7)

with Erelx the relativistic energy of the particle on the x-axis.

Note: The wave-length used by Schroedinger is based exclusively on the kinetic

energy Ekinx for the non-relativistic case as follows.

λ = 2πro = 2π
~ c
Erel

with Eo = 0 and Ep = p c where p = m v (8)

The proposed approach includes for the calculation of the wave-length the total

energy with the rest energy of a particle. For the relativistic cases we get

λ = 2πro = 2π
~ c
Erel

= 2π
~

m c γ
with γ =

1√
1− v2

c2

(9)

For v → c we get that λ→ 0.

1.2 The wave package.

We define the Fourier-Transformation of a wave package [1,2]; on the x-axis as

φx(x, t) =
1

2π

∫ +∞

−∞
κx(px) exp

{
i
c

~
[mrelx(px) x− px t]

}
dpx (10)

with a Gauss distribution κx(px) on the px-axis

κx(px) = B exp

{
−(px − pxo)

2

4(∆px)2

}
(11)

and the dispersion mrelx = mrelx(px) with

mrelx =
Erelx

c2
mrelx = mrelx(px) =

1

c2

√
E2

o + p2xc
2 and Eo = moc

2 (12)
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Because of symmetry reasons we can write also a wave package

ψx(x, t) =
1

2π

∫ +∞

−∞
χx(mrelx) exp

{
i
c

~
[mrelx x− px(mrelx) t]

}
dmrelx (13)

with the Gauss distribution on the mrelx-axis

χx(mrelx) = A exp

{
−(mrelx −mrelxo

)2

4(∆mrelx)
2

}
(14)

and the dispersion

px(mrelx) = c
√
m2

relx
− m2

o and mo =
Eo

c2
(15)

2 Differential equations.

2.1 Unrestricted differential equations.

In this and the following section the probability differential equations are derived. The

differential equations are classified into unrestricted and non-relativistic. Then they

are subclassified in groups of general, time or space independent.

The unrestricted differential equations are valid for the whole range of speed 0 ≤
v ≤ c.

We start with the wave package

ψx(x, t) =
1

2π

∫ +∞

−∞
χx(mrelx) exp

{
i
c

~
[mrelx x− px(mrelx) t]

}
dmrelx (16)

with

mrelx =
Erelx

c2
and px(mrelx) = c

√
m2

relx
−m2

o (17)

with

Erelx = Eo + Ekinx =
√
E2

o + E2
px Eo = moc

2 Epx = px c (18)

For the unrestricted range of velocities 0 ≤ v ≤ c we have that

px =
vx
c2
Erelx (19)

and Ekinx represents the kinetic energy for the whole range of speed.
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2.1.1 The wave equation.

The wave differential equation we obtain by derivation of ψx two times versus t and

two times versus x. The results are then connected through

px =
vx
c2
Erelx (20)

We get

∂2

∂x2
ψx =

1

v2x

∂2

∂t2
ψx (21)

For vx → c we have

∂2

∂x2
ψx(x, t) =

1

c2
∂2

∂t2
ψx(x, t) (22)

the well known wave equation

2.1.2 The time independent differential equation.

Time independent differential equations are deduced deriving one time and two times

the wave function ψx.

a) We derive the wave function ψx one time versus x and get the following time

independent differential equation on the x coordinate

∂

∂x
ψx =

i

~ c
Erelx ψx =

i

~ c
(Eo + Ekinx) ψx (23)

Ekinx represents the kinetic energy for the whole range of speed, relativistic and

non-relativistic.

The equation writes for conserved systems with the potential energy U(x) as

− i ~ c
∂

∂x
ψx − Eo ψx + U(x) ψx = [Ekinx + U(x)] ψx = Etot ψx (24)

where Etot is the conserved energy.

b) We derivate the wave function ψx two times versus x and get the following time

independent differential equation on the x coordinate

∂2

∂x2
ψx = − c2

~2
m2

relx ψx (25)

With

mrelx =
1

c2

√
E2

o + E2
px Eo = moc

2 and Epx = px c (26)

we get
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∂2

∂x2
ψx = − 1

~2 c2
(E2

o + E2
px) ψx (27)

2.1.3 The space independent differential equation.

We derivate the wave function ψx two times versus t

∂2

∂t2
ψx = − c2

~2
p2x ψx (28)

and with

Epx = px c and E2
p = E2

px + E2
py + E2

pz (29)

we get

− ~2
∂2

∂t2
ψx = E2

pxψx (30)

and for the space

− ~2 ∆tψ = E2
pψ (31)

with the operator ∆t defined in sec. 2.4.

2.2 Non relativistic differential equations

For non relativistic speeds we have that v � c and that Ekinx ≈ p2/(2mo).

2.2.1 General non relativistic differential equation.

The general non relativistic differential equation we obtain by deriving ψx two times

versus t and one time versus x. The results are then connected through Erelx − Eo =

Ekinx ≈ p2/(2mo). We get

− i ~ c
∂

∂x
ψx(x, t) − Eo ψx(x, t) ≈ − ~2

2 mo c2
∂2

∂t2
ψx(x, t) with Eo = mo c

2 (32)

The differential equation with the constant energy Eo describes the movement of a

non-accelerated particle in a cero potential energy field.

With Etot the total energy, Ekin the kinetic energy, Epot the potential energy and

Erel the relativistic energy, the above equation is equivalent to Erel − Eo = Ekin. If

we add at to the kinetic energy Ekin the potential energy Epot = Ux(x, t) we get the

total energy Etot for an accelerated movement. The result is
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− i ~ c
∂

∂x
ψx(x, t) − Eo ψx(x, t) + Ux(x, t)ψx(x, t) = Etotψx(x, t) (33)

− ~2

2 mo c2
∂2

∂t2
ψx(x, t) + Ux(x, t)ψx(x, t) = Etotψx(x, t) (34)

In a conservative system the total energy is time independent with Etot = constant.

Comparing equation (32) with the General Schrödinger differential equation,

the main difference is that equation (32) derives one time versus space and two times

versus time, in other words, time and space are interchanged.

2.2.2 The time independent non relativistic differential equation.

Differential equations are deduced in derivating one time or two times the wave function

ψx.

a) We derivate the wave function ψx one time versus x

∂

∂x
ψx =

i

~ c
Erelx ψx =

i

~ c
(Eo + Ekinx) ψx (35)

For a conservative field Ux = qe Vx with a total energy Etotx we have

Etotx = Ekinx + Ux and with Ekinx ≈ 1

2 mo

p2x (36)

we get {
− i ~ c

∂

∂x
+ U(x)

}
ψ(x) ≈ Ex ψ(x) (37)

with

Ex = Etotx + Eo (38)

the Eigenvalue.

b) For the time independent differential equation deduced derivating the wave

function ψx two times versus x see sec. 2.5.

2.2.3 Space independent non relativistic differential equation.

We take two times the derivate of the wave function ψx versus t

∂2

∂t2
ψx = − c2

~2
p2x ψx (39)

and with eq. (31)
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− ~2 ∆tψ = E2
pψ (40)

and v � c and a conservative potential U

Ekin ≈ 1

2 mo

p2 =
E2

p

2 Eo

and Etot = Ekin + U (41)

we obtain the space independent non relativistic differential equation{
− ~2

2 Eo

∆t + U

}
ψ ≈ Etot ψ (42)

which is equivalent to the time inependent equation from Schroedinger.

2.3 Uncertainty principle.

In the proposed model the pairs of canonical conjugated variables lead to the following

uncertainty relations

(∆E) · (∆x) ≥ 1

2
~ c (43)

and

(∆p) · (∆t) ≥ 1

2

~
c

(44)

Noticeable at this point is the relation

E ro = ~ c (45)

for a particle, that connects the radius ro and the relativistic energy E through ~ c.

2.4 Operators.

2.4.1 Relativistic operator for the linear momentum.

The relativistic operator for the linear momentum of a particle is

p̂ = i
~
c

∂

∂t
(46)

The linear momentum we get with

p̄ χ = i
~
c
∇t χ (47)
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where χ is the total mass-probability function

χ = ψx ψy ψz (48)

and ∇t

∇t =
∂

∂t
|x ex +

∂

∂t
|y ey +

∂

∂t
|z ez (49)

2.4.2 Relativistic operators for the energy.

For the relativistic energy of a non-accelerated particle we obtain the operator

Êrelx = − i ~ c
∂

∂x
(50)

Application example.

If we apply the relativistic operators to the relativistic energy of a particle

E2
x = m2

o c
4 + p2x c

2 (51)

we get

− ~2 c2
∂2

∂x2
ψx = m2

o c
4 ψx − ~2

∂2

∂t2
ψx (52)

the Klein-Gordon equation.

With mo = 0 we have

∂2

∂x2
ψx =

1

c2
∂2

∂t2
ψx (53)

2.4.3 Non-relativistic operator for the kinetic energy.

The non-relativistic operator for the kinetic energy on the x coordinate is

Êkinx = − ~2

2 mo c2
∂2

∂t2
|x (54)

and the total kinetic energy Ekin in the three dimensional space

Ekin = Ekinx + Ekiny + Ekinz = − ~2

2 mo c2
∆tχ (55)

with

∆t =
∂2

∂t2
|x +

∂2

∂t2
|y +

∂2

∂t2
|z (56)
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2.4.4 Non-relativistic Hamilton operator.

The operator for the non-relativistic total energy on the x coordinate has the form

Êx =
1

2 mo

(
i
~
c

∂

∂t
|x
)2

+ Ûx (57)

or

Êx =
p̂ 2
x

2 mo

+ Ûx (58)

which is equal to the Hamilton operator Ĥx.

The general non-relativistic differential equation thus takes the form

i ~c
∂

∂x
ψx(x, t) = Ĥx ψx(x, t) (59)

with

Ĥx =
p̂ 2
x

2 mo

+ Ûx (60)

the non-relativistic Hamilton operator.

2.4.5 Non-relativistic operator for the orbital-angular-momentum.

The wave function for the three dimentional space is

ψx(r, t) =
1

2π

∫ +∞

−∞
χ(mrel) exp

{
i
c

~
[mrel r− p(mrel) t]

}
dmrel (61)

with

r = x ex + y ey + z ez and p = px ex + py ey + p ez (62)

We define the linear momentum operator for the different coordinates as:

p̂k = i
~
c

∂

∂t
|k (63)

The orbital-angular-momentum-operator can be expressed as

M

(
r, i

~
c
∇t

)
=

(
r × i

~
c
∇t

)
(64)

with

∇t =
∂

∂t
|x ex +

∂

∂t
|y ey +

∂

∂t
|z ez (65)

The operators for the vectorcomponents are:
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M̂x = ŷ p̂z − ẑ p̂y M̂y = ẑ p̂x − x̂ p̂z M̂z = x̂ p̂y − ŷ p̂z (66)

The conmutations are as known

[M̂k, M̂k+1] 6= 0 [M̂k, Q̂] = 0 with Q̂ = M̂2
x + M̂2

y + M̂2
z (67)

2.5 The proposed theory and the Correspondence Principle.

The present theory is based on the radius-energy relation that substitutes the de Broglie

wavelength.

The accordance of the proposed theory with the correspondence principle of quan-

tum mechanics is ensured, in that the time independent differential equation from

Schroedinger, deduced from the wave package constructed with the de Broglie wave-

length, can be derived from the wave package constructed with the radius-energy rela-

tion presented in this work.

We start derivating the wave function ψx two times versus space, to get the time

independent differential equation

∂2

∂x2
ψx = − c2

~2
m2

relx ψx (68)

With

mrelx =
1

c2

√
E2

o + E2
px Eo = moc

2 and Epx = px c (69)

we get

∂2

∂x2
ψx = − 1

~2 c2
(E2

o + E2
px) ψx (70)

For non-relativistic velocities v � c we have that

Ekinx =
p2x

2 mo

and E2
px = p2x c

2 = 2 mo c
2 Ekinx (71)

and we get

∂2

∂x2
ψx = − 2 mo

~2

[
1

2
Eo + Ekinx

]
ψx (72)

With a conservative potential Etotx = Ux + Ekinx we get finally[
− ~2

2 mo

∂2

∂x2
+ Ux

]
ψx = Ex ψx with Ex =

1

2
[Eo + 2 Etotx ] (73)
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For the three dimensional space we have[
− ~2

2 mo

∆r + U

]
χ = E χ (74)

with ∆r the Laplace operator and

E =
1

2
[Eo + 2 Etot] (75)

If we make Eo = 0 we get[
− ~2

2 mo

∆r + U

]
χ = Etot χ (76)

Eq. (76) is exactly the time independent differential equation constructed by

Schroedinger with Etot the Eigenvalue.

2.6 The mass conservation equation.

The mass conservation differential equation we obtain by derivating ψx one time versus

t and one time versus x. The results are then connected through

px =
vx
c2
Erelx (77)

We get

∂

∂t
ψx(x, t) = − vx

∂

∂x
ψx(x, t) (78)

We define the mass probability density as

ρx(x, t) = ψ∗
x(x, t) ψx(x, t) or ρ(r, t) = ψ∗(r, t) ψ(r, t) (79)

We derive the mass probability density versus time

∂

∂t
ρx(x, t) =

∂

∂t
[ψ∗

x(x, t) ψx(x, t)] =
∂

∂t
ψ∗
x(x, t) ψx(x, t) + ψ∗

x(x, t)
∂

∂t
ψx(x, t) (80)

With eq. (78) we get

∂

∂t
ρx(x, t) = −vx

[
∂

∂x
ψ∗
x(x, t) ψx(x, t) + ψ∗

x(x, t)
∂

∂x
ψx(x, t)

]
(81)

or
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∂

∂t
ρx(x, t) = −vx

∂

∂x
[ψ∗

x(x, t) ψx(x, t)] = − ∂

∂x
[vx ρx(x, t)] = − ∂

∂x
j(x, t) (82)

or

∂

∂t
ρ(r, t) = − ∇r j(r, t) with j(r, t) = v ψ∗(r, t) ψ(r, t) (83)

where j(r, t) is the mass-current probability density.

2.7 The wave equation for relativistic speeds.

We start with the wave eq. (13) from sec. 1.2

ψx(x, t) =
1

2π

∫ +∞

−∞
χx(mrelx) exp

[
i
c

~
(mrelx x− px(mrelx) t)

]
dmrelx (84)

and analyze the equation for relativistic speeds where ∆v = c− v � c. We get

Erel = Ep = p c =
m v

β
c β =

√
1− v2

c2
λ =

h

p
(85)

The resulting wave equation is

ψx(x, t) =
1

2π

∫ +∞

−∞
χx(mrelx) exp

[
i

~
(p x− Epv t)

]
dmrelx (86)

where

Epv = p v =
m v

β
v (87)

With Erel = pc2/v and E2
o � E2

p we get

Epv = p v =
p2 c2

Erel

=
p2 c2√
E2

o + E2
p

≈ pc = Ep (88)

We now derive the wave equation one time versus space and one time versus time

and connect the results with Epv = pc. We get

∂

∂t
ψx = − c

∂

∂x
ψx (89)
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3 Wave equations for free moving particles.

3.1 The relativistic wave equation for the free moving particle.

Until now we have worked with the wave package defined with eq. (13) where the

integration is made versus dmrelx . In what follows the wave package defined with eq.

(10) is used where the integration is made versus dp.

We start with the dispersion equations for the relativistic mass mrelx of sec. 1.2. In

what follows we omit the sub-index x and write mrel instead of mrelx .

mrel =
Erel

c2
mrel = mrel(p) =

1

c2

√
E2

o + p2c2 and Eo = moc
2 (90)

which can be transformed to

mrel =
1

c

[
p2 +

E2
o

c2

]1/2
=

1

c

[
p+ p

′
]

(91)

with

p
′

1,2 = −p±
√
p2 +

E2
o

c2
(92)

We also transform

p(mrel) = c
√
m2

rel − m2
o and mo =

Eo

c2
(93)

to

p =
1

c

[
E2

rel −m2
o c

4
]1/2

with Erel = Eo + Ekin (94)

and

p =
1

c

[
E2

kin + 2 Eo Ekin

]1/2
=

1

c

[
Ekin + E

′
]

(95)

with

E
′

1,2 = −Ekin ±
√
E2

kin + 2 Eo Ekin (96)

Note: In what follows we changed the symbol for the wave function from φ to Ψ

to follow the convention.

If we now introduce (91) and (95) in eq. ( 10 )

Ψ(x, t) =
1

2π

∫ +∞

−∞
κx(px) exp

{
i
c

~
[mrelx(px) x− px t]

}
dpx (97)
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we get

Ψ(x, t) ∝ exp

{
i

~

[
[p+ p

′
]x− [Ekin + E

′
]t
]}

(98)

what we can write in the form

Ψ(x, t) ∝ exp

{
i

~

[
p
′
x− E

′
t
]}

· exp
{
i

~
[p x− Ekin t ]

}
(99)

We know that

Erel = Eo + Ekin = Es + En (100)

with

Es =
E2

o√
E2

o + E2
p

En =
E2

p√
E2

o + E2
p

Ep = p c (101)

For relativistic speeds v > 0.95c we have that

Es << En Erel ≈ En ≈ Ep Ekin ≈ En − Eo (102)

and

p
′

1 = 0 p
′

2 = −2p E
′

1 = 0 E
′

2 = −2Ekin (103)

and get

Ψ(x, t) ∝ exp

{
± i

~
[p x− Ekin t ]

}
= exp

{
± i

~
[p x− (En − Eo) t ]

}
(104)

where Ekin is the relativistic kinetic energy.

3.1.1 The wave package for the relativistic wave equation.

To get the wave package we derive (104) one time versus space and one time versus

time.

c
∂

∂x
ψx ∝ ± i

~
p c ψx (105)

∂

∂t
ψx ∝ ± i

~
[p c − Eo] ψx (106)
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We now eliminate from the two equations p c ψx and get

∂

∂t
ψx ∝ − c

∂

∂x
ψx ± i

~
Eo ψx (107)

The time independent equation is

− i ~ c
∂

∂x
ψx = ± Eo ψx (108)

which with an potential U(x) gives

− i ~ c
∂

∂x
ψx + U(x)ψx = [± Eo + Etot] ψx = Eψx (109)

If we compare it with (33) which was derived with the wave package defined with

eq. (13) where the integration is made versus dmrelx , and which was derived as non

relativistic

− i ~ c
∂

∂x
ψx(x, t) − Eo ψx(x, t) + Ux(x, t)ψx(x, t) = Etotψx(x, t) (110)

we see that they are equal. This means that we have the same equation for non

relativistic and relativistic problems.

3.2 The slightly relativistic wave equation for the free moving

particle.

For v << c we have that p ≈ mv

Es ≈ Eo and En ≈ Erel − Eo = Ekin (111)

Also for v → 0 we get that

Ekin → 0 and E
′ → 0 for v → 0 (112)

and

p→ 0 and p
′ → mc for v → 0 (113)

From ( 99 ) we get

Ψ(x, t) ∝ exp

{
i

~
[mc x ]

}
· exp

{
i

~
[p x− Ekin t ]

}
(114)

where we have that the first exponent is not a function of p and Ekin. As p = mv

from the second exponent is much smaller than mc from the first exponent, the first
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exponent oscillates along the x − axis between plus and minus of its absolute value

which is one. The frequency of the oscillation of the first factor is very high compared

with the second, and the first factor can be made equal to one for all x.

Ψ(x, t) ∝ exp

{
i

~
[p x− Ekin t ]

}
(115)

With p ≈ mv we also can write

Ekin ≈ − c2

2Eo

p2 +
1 · 3
2 · 4

c4

E3
o

p4 − 1 · 3 · 5
2 · 4 · 6

c6

E5
o

p6 + · · · (116)

and arrive to the relativistic wave equation for a free moving particle

i ~
∂

∂t
Ψ =

[
~2

2m

∂2

∂x2
+

1 · 3
2 · 4

~4

m3c2
∂4

∂x4
· · ·

]
Ψ (117)

If we take into consideration only the first two terms of Ekin and introduce an

external potential U(x), we get the following time independent wave equation for a

slightly relativistic moving charged particle in an external potential.[
~2

2m

∂2

∂x2
+

1 · 3
2 · 4

~4

m3c2
∂4

∂x4
+ U(x)

]
Ψ = E Ψ (118)

To calculate the maximum velocity vmax for this case we make the third term of

eq. (116) ten times smaller than the second term and get vmax = 0.346 c. It is not

recommended to use more than two terms of eq. 116 because of the approximations

made for the deduction.

Note: Eq. 118 allows to calculate the solutions for QM systems which are slightly

relativistic instead of using the strong relativistic Dirac formulation.

3.3 The non-relativistic wave equation for the free moving

particle

If we make Eo = 0 because we want an equation that describes only the kinetic energy

we get p
′
= 0 and E

′
= 0, and if we reduce our observation to non-relativistic speeds

with v << c we have from eq. (99)

Ψ(x, t) ∝ exp

{
i

~
[p x− Ekin t ]

}
with Ekin =

1

2

p2

m
= Ekin(p) (119)

Ψ(x, t) =
1

2π

∫ +∞

−∞
κx(px) exp

{
i

~
[p x− Ekin(p) t]

}
dpx (120)

The wave function derived two times versus x and one time versus t gives the
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differential equation of the free moving particle of mass m. If we introduce an external

potencial U we have the Schrödinger equation for an accelerated particle.

i ~
∂

∂t
Ψ(x, t) ≈

[
− ~2

2 mo

∂2

∂x2
+ U

]
Ψ(x, t) (121)

4 Applications of the non-relativistic differential equa-

tion

The solutions of the time independent non-relativistic differential equation (33) for a

potential pot, the harmonic oscillator and the hydrogen atom are derived.

4.1 Potential pot

The non-relativistic time independent differential equation is

− i ~ c
∂

∂x
ψx(x) + Ux(x) ψx(x) = [Etot + Eo] ψx(x) = E ψx(x) (122)

With y = ψx(x) we can write

− i ~ c
dy

y
= [E − U ] dx (123)

After integration we get

− i ~ c [ln |y|+ lnCy] =

∫
[E − U ] dx (124)

resulting

|y| = 1

Cy

exp

{
i

~ c

∫
[E − U ] dx

}
(125)

Equation (125) is valid for all potential energies U and gives real values for y if{
i

~ c

∫
[E − U ] dx

}
= k π and k = 0, ±1, ±2, ±3, · · · (126)

defining the quantization condition, which together with the normalization condi-

tion allows the calculation of the eigenfunctions.

The potential pot is defined as
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U =


∞ for x ≤ 0

0 for 0 < x < a

∞ for x ≥ a

and we have for U = 0 and a constant E because of the assumption of energy

conservation

1

~ c
E x = k π resulting with x = a Ek = π

~ c
a
k (127)

with k = 0, ±1, ±2, ±3, · · · the eigenvalues Ek.

The total energy is with Ek = Etot + Eo

Etot = Ek − Eo = π
~ c
a
k − Eo (128)

and for Etot = 0 we get

ao = k
π~ c
Eo

= k π ro with
~ c
Eo

= ro (129)

the radius of of a rest electron or positron.

The eigenfunction is

yk =
1

Cy

exp

{
i

~ c
Ek x

}
(130)

The integration constant Cy we get with the normalization condition∫ ∞

−∞
y∗
k′
yk dx = δ(k′ ,k) (131)

For k
′
= k we get

1

C2
y

∫ a

0

exp

{
i

~ c
[Ek′ − Ek] x

}
dx = 1 (132)

resulting

1

C2
y

= a or Cy =
√
a (133)

The normalized eigenfunction is

yk =
1√
a
exp

{
i

~ c
Ek x

}
(134)

Conclusion: The main differences compared with the solution obtained with the

Schroedinger equation is that the quantization of the energy Ek is proportional to k

instead of k2 and for defined values of a the total energy Etot becomes zero.
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4.2 Harmonic oscillator

The potential energy for the harmonic oscillator is

U(x) =
K

2
x2 =

m ω2

2
x2 with ω2 = K/m (135)

With eq. (125) we get

|y| = 1

Cy

exp

{
i

~ c

∫ [
E − K

2
x2
]
dx

}
(136)

With the quantization condition we get

1

~ c

∫ a

0

[
E − K

2
x2
]
dx =

1

~ c

[
E a− K

6
a3
]
= k π (137)

resulting for the quantized energy with Etot = Ek − Eo

Etot = π
~ c
a

[
k +

1

6

m ω2

π ~ c
a3
]
− Eo = Ek − Eo (138)

The minimum quantum change between two adjacent energy levels is

∆Etot = ∆Ek = π
~ c
a

(139)

For Etot = 0 we get

a

[
Eo −

1

6
m ω2 a2

]
= k π ~ c (140)

which for k = 0 gives

a1 = 0 or a2,3 = ±
√

6 Eo

m ω2
for k = 0 (141)

We get for the minimum quantum change between two adjacent energy levels

∆Etot = ± π√
6
~ω (142)

The minimum quantum energy difference ∆Etot between two adjacent energy levels

is proportional to ~ω.
With the normalization condition given by equation (131) we have that∫ ∞

−∞
y∗
k′
yk dx =

1

C2
y

∫ ∞

−∞
exp

{
i

~ c
[Ek′ − Ek] x

}
dx (143)

or

22



~ c
C2

y

∫ ∞

−∞
exp { i [Ek′ − Ek] η} dη =

~ c
C2

y

δ(k′ ,k) with η =
x

~ c
(144)

With k
′
= k we get the integration constant Cy =

√
~ c resulting the normalized

eigenfunctions

yk =
1√
~ c

exp

{
i

~ c

[
Ek x−

K

6
x3
]}

(145)

4.3 Hydrogen atom

We start with the deduction of the quantization conditions from eq. (33) which was

deduced for non relativistic speeds but is also valid for relativistic speeds as shown in

sec. 3.1.1.

− i ~ c
∂

∂x
ψx(x) + Ux(x) ψx(x) = [Eo + Etot] ψx(x) = E ψx(x) (146)

which is equivalent to

Erel + U = Eo + Ekin + U = E Etot = Ekin + U Erel = Eo + Ekin (147)

We define the operator

~∇ · ~E = ∇E =
∂

∂x
+

∂

∂y
+

∂

∂z
with ~E = ~ex + ~ey + ~ez (148)

∇E ψ(x, y, z) =
∂

∂x
ψ(x, y, z) +

∂

∂y
ψ(x, y, z) +

∂

∂z
ψ(x, y, z) (149)

For polar coordinates we write

− i ~ c ∇ χ(r, θ, ϕ) + U χ(r, θ, ϕ) = E χ(r, θ, ϕ) (150)

with the ∇ operator expressed in polar coordinates

∇ =
∂

∂r
+

2

r
+

1

r sin θ

∂

∂ϕ
+

1

r

∂

∂θ
+

1

r
cot θ (151)

The differential equation has now the form[
∇ +

i

~ c
U

]
χ =

i

~ c
E χ (152)
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We now assume that the wave function χ can be expressed as a product of a function

exclusively of the distance r and a function of the angular variables θ and ϕ.

χ(r, θ, ϕ) = R(r) Y (θ, ϕ) (153)

We get [
d

dr
+

4

r

]
R · Y +

1

r
ΛY ·R +

i

~ c
U ·R · Y =

i

~ c
E ·R · Y (154)

with the operator Λ

Λ =
1

sin θ

∂

∂ϕ
+

∂

∂θ
+ 2 cot θ (155)

We now assume that

ΛY = −λY (156)

and get two separate differential equations for R(r) and Y (θ, ϕ).

d

dr
R− i

~ c
[E − U ]R +

1

r
[4− λ]R = 0 (157)

and [
1

sin θ

∂

∂ϕ
+

∂

∂θ
+ 2 cot θ

]
Y = −λY (158)

After multiplying Eq. (157) with dr/R and integrating we get

lnR =
i

~ c

∫ r

ru

[E − U ] dr − [4− λ] ln
r

ru
(159)

where ru and r are arbitrary integrating limits that will be defined later on.

From the solution of eq. (158) results that λ = i l with l = 0, ±1, ±2; · · · as will

be shown later at sec. 4.3.2. We get

R = exp

{
−4 ln

r

ru

}
exp

{
i

~ c

[∫ r

ru

(E − U)dr + l ~ c ln
r

ru

]}
(160)

The quantization condition requires that

1

~ c

[∫ r

ru

(E − U)dr + l ~ c ln
r

ru

]
= k π with k = 0, ±1, ±2; · · · (161)

Equation (161) is valid for all point symmetrical potentials U . We now introduce

the potential of an atomic nucleus
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U = − Z
Ku

r
with Ku =

e2

4π εo
(162)

Note: According to the focal-point approach, nuclei are composed of electrons

and positrons that neither attract nor repel each other for the distance between them

tending to zero.

If Np are the number of positrons and Ne the number of electrons which constitute

the nucleus we have that

Z = Np − Ne (163)

For the hydrogen it is Np = 919 and Ne = 918.

For energy conservation conditions we have that∫ r

ru

Edr = E (r − ru) (164)

with the value E a constant. We get

E =

[
k π ~ c− (Z Ku + l ~ c) ln

r

ru

]
1

r − ru
(165)

In eq. (165) the terms represent E = Ēk + Ū + Ēl where

Ēk =
k π ~ c
r − ru

Ū = − Z Ku

r − ru
ln

r

ru
Ēl = − l ~ c

r − ru
ln

r

ru
(166)

To arrive to the Balmer equation for the hydrogen atom the following steps are

necessary.

Step one:

The term that describes the potential energy

Ū = − Z Ku

r − ru
ln

r

ru
= − Z e2

4π εo

1

r − ru
ln

r

ru
(167)

gives the potential energy Ū for an orbital electron and Z charges e+ at the atomic

nucleus.

We now assume, that the orbital electron can interact with np positrons of the Np

positrons of the nucleus, where np >= Z.

Ūn = − np e
2

4π εo

1

r − ru
ln

r

ru
(168)

The concept is shown in Fig. 1

Step two:

As the radius r
′
of an atom is constant, the potential energy is constant for all

25



++

-
-
-

++

++

++

-

r 

Figure 1: Orbital electron with np = 3.

number np of positrons the orbital electron can interact. We can write

Ūn = − Ku
np

r − ru
ln

r

ru
= − e2

4π εo

1

r′
= − Ku

r′
np >= Z (169)

We get that

1

r − ru
ln

r

ru
=

1

np r
′ r

′
= constant (170)

Step three:

From eq. (167) we get

Ū = − Z
Ku

r − ru
ln

r

ru
= − Z

Ku

np r
′ (171)

If we now assume that the quantization of the charges of the nucleus which interact

with the orbital electron follows the rule np = n2, we get for the energy levels

Ū = − Z
Ku

n2 r′
n = 1, 2, 3, · · · np = n2 (172)

The energy levels of the orbital electron have their origin in the number of positrons

np of the nucleus with which they interact. The number is given by the quantum

number n. We have for

n = 1, 2, 3, 4 respectively np = 1, 4, 9, 16 (173)

The difference between energy levels is
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∆Ū = Z
Ku

r′

[
1

n2
− 1

(n+∆n)2

]
∆n = 0, 1, 2, · · · (174)

For ∆n = 1 we get

∆Ū = Z
Ku

r′

[
1

n2
− 1

(n+ 1)2

]
(175)

which for Z = 1 is equal to Balmers spectroscopic equation for the hydrogen, namely

E = h c RH
1

n2
and ∆E = h c RH

[
1

n2
− 1

(n+ 1)2

]
(176)

with RH the Rydberg constant and n = 1, 2, ......

From the two equations (175) and (176) for the potential energy we get

Ku

r
′
H

= h c RH r
′

H =
Ku

h c RH

= 1.05811 · 10−10 m (177)

The relation between the mean distance r
′
H and the Bohr radius ao is

r
′

H = 2 ao = 1.05811 · 10−10 m (178)

We conclude, that the potential levels of the orbital electron at the hydrogen atom

have their origin in the number of positrons of the nucleus that interact with the

orbital electron. From the 919 positrons of the hydrogen nucleus, at each potential

level np = n2 interact with the orbital electron.

The proposed approach “ Emission & Regeneration” UFT is based on focal-point

representation of subatomic particles. Electrons and positrons are represented as focal-

points of rays of Fundamental Particles (FPs) that move from infinite to infinite with

light speed or infinite speed. A focal-point emits FPs with light speed and is regener-

ated by FPs with infinite speed and vice-versa. There are two types of electrons and

positrons according they emit FPs with light (deccelerating=dec) or with infinite (ac-

celerating=acc) speed. Acceleration or deceleration refers to the speed of the outgoing

FPs relative to the incoming FPs at the focal-point. Lets call them

• acc+ positron that emits FPs with infinite speed

• dec+ positron that emits FPs with light speed

• acc− electron that emits FPs with infinite speed

• dec− electron that emits FPs with light speed

In the proposed approach electrons and positrons don’t have an intrinsic spin. The

spin has its origin in a circular movement of the focal point on the orbit of the electron
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similar to the movement of an epysicle. See sec. 5.2.

The infinite speed for FPS is a requirement that comes from the need that subatomic

particles must be regenerated immediately after having emitted FPs. The infinite speed

also explains entanglement.

Regenerating FPs of subatomic particles are those FPs that have been emitted pre-

viously by other subatomic particles. All existing electrons and positrons are connected

through their rays of emitted and regenerating FPs.

4.3.1 Generalization of the procedure to derive the splitting of the energy

levels

From the previous steps required to derive the splitting of the potential energy, we now

establish the general rule to derive the splitting of the energies of the orbital electrons.

The rule is as follows:

With a term of the type

B = A
ln r

ru

r − ru
(179)

where r and ru are arbitrary integration limits, we can build an equation with a

constant radius r
′
of the type

B
′

γ = A γ
ln r

ru

r − ru
=
A

r′
what gives

ln r
ru

r − ru
=

1

γ r′
(180)

If we introduced the result in eq. 179 we get

B = A
ln r

ru

r − ru
=

A

γ r′
(181)

We start applying the rule to the term of the potential energy to show that we

arrive to the same eq. (172) which led to the Balmer equation. We start with

Ū = −Ku

ln r
ru

r − ru
(182)

We introduce to the equation the factor γ = n2 and impose that it must be equal

to Ku/r
′
.

Ū
′
= −Ku n

2
ln r

ru

r − ru
= −Ku

r′
what gives

ln r
ru

r − ru
=

1

n2 r′
(183)

and with eq. (182)

Ū = − Ku

n2 r′
(184)
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which is equal to eq. (172) which led us to the Balmer equation except for the

factor Z.

Now we calculate the splitting of the energy also for the orbital angular momentum

quantum number l.

We start with

E = Ku

ln r
ru

r − ru
(185)

and with eq. (165) with a potential np >= Z

E
′
=

[
−np Ku − l ~ c +

k π

ln r
ru

~ c

]
ln r

ru

r − ru
(186)

and apply the rule to eq. (186) that we can write with Ku = α ~ c

E
′
= Ku

[
−np −

l

α
+

k π

α ln r
ru

]
ln r

ru

r − ru
=

Ku

r′
Ku = α ~ c (187)

with α = 1
137

the fine-structure constant.

We get
ln r

ru

r − ru
=

1

r′
[
−np − l

α
+ k π

α ln r
ru

] (188)

and with eq. 185 we get that

E =
Ku

r′
[
−np − l

α
+ k π

α ln r
ru

] (189)

and with np = n2 we get

E = − Ku

r′
[
n2 + 1

α

(
l + k π

ln r
ru

)] (190)

If we make k = 0 we get

E
′
= − Ku

r′ [n2 + l α−1 ]
= − Ku

r′ [n2 + 137 l ]
(191)

With l = 0 we get again Balmers equation

Now we calculate ln r
ru

from eq. 160

R(r) = exp

(
−4 ln

r

ru

)
k = 0,±1,±2, · · · (192)
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For the hydrogen atom it is R = r
′
H = 2 ao = 1.06 · 10−10 m we get ln r

ru
= 5.74

what gives

k π

ln r
ru

= 0.547 k ≈ 1

2
k k = 0,±1,±2, · · · (193)

We see that the total orbital angular momentum quantum number is

j = l + 0.547 k ≈ l +
1

2
k with k = 0,±1,±2,±3, · · · (194)

The spectroscopic energy is given by

∆E =
Ku

r′

 1[
n2 + 1

α

(
l + k π

ln(r/ru)

)] − 1[
n′ 2 + 1

α

(
l′ + k′ π

ln(r/ru)

)]
 (195)

where

ln(r/ru) = − 1

4
lnR(r) with R(r) = r

′
the atomic radius (196)

As electrons repel each other they place themselves as far as possible on the orbit.

The orbit can be occupied only by two electrons which are placed at the opposite

sides of the diameter of the orbit, which is now characterized by the quantum number

k = ±1 . This quantum number replaces the fictitious spin s = ±1/2. The Pauli

principle refers now to the following quantum numbers n, l, ml, k which cannot be

all equal for two orbital electrons.

Configuration of electrons

−−−−−−−−−−−−−−−−−−−−− −−−− −−−−
n l ml k Electr. per shell

−−−−−−−−−−−−−−−−−−−−− −−−− −−−−
1 0 0 ±1 2

−−−−−−−−−−−−−−−−−−−−− −−−− −−−−
2 0 0 ±1 2

1 1, 0, −1 ±1 6

−−−−−−−−−−−−−−−−−−−−− −−−− −−−−
3 0 0 ±1 2

1 1, 0, −1 ±1 6

2 2, 1, 0, −1, −2 ±1 10

−−−−−−−−−−−−−−−−−−−−− −−−− −−−−
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Note: The present approach gives the principal quantum number a physical inter-

pretation, namely, the number of positrons np that interact with the orbital electron.

4.3.2 Deduction of the condition λ = i l.

Now we deduce the condition λ = i l introduced previously in eq. (158).[
1

sin θ

∂

∂ϕ
+

∂

∂θ
+ 2 cot θ

]
Y = −λY (197)

We assume that

Y (θ, φ) = Θ(θ) Φ(ϕ) and
d

dϕ
Φ = m Φ (198)

and with Φ(ϕ) = Φ(ϕ+ 2π) we get

Φ = exp{m ϕ} with m = i ml and ml = ±0, ±1, ±2; · · · (199)

With eq. (198) we have that eq. (158) transforms to

m

sin θ
Θ+

d

dθ
Θ + 2 cot θ Θ = − λ Θ (200)

and

dΘ

Θ
= −

[ m

sin θ
+ 2 cot θ + λ

]
dθ (201)

which gives the solution

Θ =
1

CΘ

exp

{
−
∫ [

i ml

sin θ
+ 2 cot θ + λ

]
dθ

}
(202)

With Θ(θ) = Θ(θ + 2π) we conclude that

Θ =
1

CΘ

exp {−2 ln sin θ} exp {−i [ ml ln(csc θ − cot θ) + l θ ]} (203)

with λ = i l and l = ±0, ±1, ±2; · · · what we have anticipated for eq. (160).

Eq.( 200) we can now write as

d

dθ
Θ + i

ml

sin θ
Θ = − 2 cot θ Θ − i l Θ (204)

In this equation the real and the imaginary terms must be equal, and we get from

the imaginary terms that
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ml

l
= − sin θ with ml = ±0, ±1, ±2; · · · and l = ±0, ±1, ±2; · · · (205)

We conclude, that the relation between the orbital quantum number l and the

magnetic quantum number ml is∣∣∣ml

l

∣∣∣ = | − sin θ| ≤ 1 or |ml| ≤ | − l sin θ| (206)

ml is the projection of l on the x− y plane and gives the projection of the orbital

area A = π l2 on the x− y axis.

Ax,y = π m2
l = π (l sin θ)2 ml ≤ l (207)

Ax,y is the part of the orbital area perpendicular to the z − axis. The z − axis

defines the magnetic flux Φ for an external magnetic field in z direction.

Φ = ~Bz · ~A Φ = Bz Az (208)

An unbound orbital electron is always forced by an external magnetic field Bz to

move in a plane perpendicular to the z axis.

An inhomogeneous magnetic field Bz, generates a force in the z direction on an

unbound orbital electron.

~Fz = (~m · δ

δ~rz
) ~Bz ~m = I ~A cos θ I =

e ω

2π
(209)

This force is measured in the Stern-Gerlach experiment. The standard model asso-

ciates an angular momentum to the magnetic field of an orbiting electron. As unbound

orbital electrons have no angular momentum, a fictitious angular momentum (spin)

was postulated.

The energy splitting in a magnetic field is given by

∆E = gl ml µB Bz (210)

with gl the Lande factor, ml the quantum number projection of angular momentum,

µB the Bohr magneton, and Bz the magnetic flux density.

Conclusions: The present approach is based on the “E & R “ model, where

nucleons are composed of electrons and positrons that neither attract nor repel each

other when the distance between them tends to zero. A nucleon can polarize, so that

an orbital electron can interact during a short time with more than one positron of the
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nucleon. In the case of the hydrogen, the orbital electron can be attracted during a

short time by two or more positrons of the proton defining the higher energy levels for

the orbital electron.

As nucleons are composed of electrons and positrons, also quarks are composed

of electrons and positrons. The fractional charges of quarks are simply the relation

between the number of electrons or positrons that integrate the quark, to the total

number of electrons and positrons that compose the quark. No fractional charges

exist.

The electron shells of atoms is the result of the accommodation of the electrons

and positrons of the atomic nuclei in the quarks. The combination principle used in

spectroscopy becomes with the “E & R “ model a physical interpretation.

4.4 Helium atom.

Fig. 2 shows the Helium atom where one orbital electron interacts with n1 positrons

and the other with n2 positrons of the nucleus.
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Figure 2: Energy levels at an excited helium atom.

The potential energy of the excited system is given by

EHe = En1 + En2 + E1,2 (211)

where

En1 = Ku
1

r
′
He

1

n2
(212)
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En2 = Ku
1

r
′
He

1

n2
(213)

E1,2 =
Ku

2 r
′
He n

2
(214)

Note: The present approach explains energy levels with:

• the number np of positrons of the nucleus that interact with the orbital electron.

• the quantization of radii of orbital electrons expressed with r
′
= r

′
(n, l,ml, k).

The last explains the energy quantization at the positronium where np = ne = 1.

The general explanation is given by the interaction between FPs emitted by external

nuclei and orbital electrons, and the own emitted FPs. The quantization of energy levels

is finally reduced to the quantization of the energy of each FP.

EFP = h νFP with νFP a universal constant (215)

5 Splitting of atoms and energy levels.

The present approach gives different interpretations for the splitting of atoms at the

Stern-Gerlach experiment and the splitting of energy levels at the hydrogen atom.

5.1 Splitting of atoms in the Stern-Gerlach experiment.

To explain the splitting of the atomic ray in the Stern-Gerlach experiment, electrons

were assigned an intrinsic spin with a quantized magnetic field that takes two positions,

up and down relative to an external magnetic field, although it is not possible to explain

how the intrinsic spin and magnetic field are generated. Measurements with individual

electrons to detect the magnetic spin are fruitless because of the strong Lorenz force.

Classical physics associates to an orbital electron an angular moment ~l and a mag-

netic moment ~µ

~µ = I ~A = − e

2me

~l (216)

An external field ~B generates a potential magnetic energy Epot and an angular

moment ~D

Epot = −~µ ~B ~D = ~µ× ~B =
d

dt
~l (217)
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If the angular moment ~l = 0 we have that ~µ = 0, Epot = 0 and ~D = 0.

Unbound orbital electrons have in quantum mechanics angular moment ~l = 0 what

would give an magnetic moment ~µ = 0 and make impossible to explain the splitting of

the neutral atom in the Stern-Gerlach experiment. To solve the problem, an intrinsic

spin ~s was postulated for the electron with an operator with an eigenstate of the

z component of the spin operator with the projection quantum number ms = ±1
2
~

parallel to the external field ~B. The magnetic moment then becomes

~̂µs = gs µB
~̂s

~
with µB = − e~

2me

(218)

The postulate of an intrinsic spin makes the magnetic moment ~µs independent of

the existence of the angular moment l of the orbital electron and the Stern-Gerlach

experiment can be explained.

For the standard model the unbound orbital electron has no angular orbital moment

and the generated magnetic field takes the direction of maximum compensation of the

external magnetic field. This field is opposed to the external magnetic field what is

expressed with the projection quantum number ms = ±1/2.

The proposed approach has no unbound orbital electrons because atomic nuclei are

composed of electrons and positrons that move with the orbital electron and generate

an angular moment l 6= 0.

Fig: 3 shows the generation of the magnetic field dHn independent of the angular

moment l of an orbital electron.

The concept is shown in Fig: 3

The approach E&R UFT shows that electrons and positrons coexist in nucleons

without repelling or attracting each other. They can be seen as swarms of electrons

and positrons forming the nucleon. As nuclei are composed of nucleons they are also

composed of electrons and positrons as shown in Fig. 3 a).

The charge Q of a nucleus is replaced by the expression ∆n = n+ −n− which gives

the difference between the constituent numbers of electrons and positrons that form

the nucleus. As the ni are integer numbers, the Charge of the nucleus is quantified.

As examples we have for the proton n+ = 919 and n− = 918 with a binding Energy

of EBprot = −6.9489 · 10−14 J = −0.43371 MeV , and for the neutron n+ = 919 and

n− = 919 with a binding Energy of EBneutr = 5.59743 · 10−14 J = 0.34936MeV .

The dHn field is generated by the orbital electron and the interacting positron of

the nucleus that follows the orbital electron. The two opposed currents generate a dHn

field equal to the field of a bar magnet as shown in Fig. 3 b).

The neutral atoms used in the Stern-Gerlach experiment have all complete shells

plus one electron of the next shell, which is not unbound, because it interacts with one

positron of the nucleus which follows him. The configuration of the Ag is [Kr]4d105s1.
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Figure 3: Magnetic field dHn of an orbital electron.

5.2 The splitting of energy levels at the hydrogen atom.

The proposed approach represents electrons and positrons as focal points of rays of FPs

that move from infinite to infinite with light speed and infinite speed. FPs are emitted

by focal points and at the same time, FPs emitted by other focal points regenerate

them. Focal points that emit FPS with light speed are regenerated by FPs with infinite

speed and vice versa. At the focal point the speed of the FPs changes.

We start with (190)

E = − Ku

r′
[
n2 + l

α
+ k π

α ln r
ru

] (219)

with

Ku =
e2

4π εo
Ku = α ~ c (220)

The energy E is defined by three quantum numbers, namely n, l and k. The term

in the denominator that is associated with the intrinsic spin of the orbital electron,

namely

k π

α ln r
ru

≈ 1

α

1

2
k =

4 π εo
e2

~ c
1

2
k k = 0,±1,±2,±3, · · · (221)
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is a function of the product of the charge of the hydrogen nucleus e and the charge

of the orbital electron e, and a function of the integration limits r and ru, what shows,

that the above term is not the product of an intrinsic spin of the orbital electron. It is

given by the interaction between nucleus and orbital electron, the same as the orbital

angular momentum.

6 Radiation of accelerated particles.

Experience shows that all accelerated charged particles emit energy as electromagnetic

radiation. The stability of orbital electrons, which are radially accelerated, is explained

with the quantization of the energy levels of orbital electrons.

The present approach explains the origin of energy levels of orbital electrons with

the number of positrons of the nucleus that interact with the orbital electron. In

other words, the linear superposition of potential fields of positrons, leaving open the

question of stability of the radially accelerated orbital electrons.

The E&R model represents subatomic particles (SPs) as focal points of rays of

Fundamental Particles (FPs) that move from infinity to infinity. FPs have longitudinal

and transversal angular momenta where the energy of the SP is stored. FPs are emitted

by the focal point and at the same time regenerate the focal point. Regenerating FPs

are those FPs that were emitted previously by external subatomic particles. Because

of the energy conservation principle, the current of emitted FPs must be equal to the

current of regenerating FPs. SPs interact through the cross product of the angular

momenta of their FPs.

The regenerating FPs of a SP are activated by their emitted FPs when they arrive

to external SPs. There is a time delay between the emitted FP and the arrival of the

regenerating FP that was activated by the first. The emitted FP takes with it the

information of the location of the focal point from which it was emitted. The informa-

tion is stored in the direction of the longitudinal angular momenta. This information

is transmitted to the regenerating FP when activated, and allows that the regenerating

FP meets the focal point.

At SPs that are at rest or move with constant speed, the externally activated

regenerating FPs meet the focal point. At SPs that are accelerated, the externally

activated regenerating FPs fail the focal point, because of the acceleration during the

time delay. The regenerating FPs that fail the focal point move then independent from

the focal point as radiated photons or neutrinos.

In the case of the orbital electron with its radial acceleration, the regenerating FPs

don’t fail the electron because of the small radius of the orbit. It is equivalent to a
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resting electron for all external SPs where the regenerating FPs are activated. Because

of the small energy of the orbital electron the uncertainty principle between energy and

space includes the orbit of the electron.

(∆E) · (∆x) ≥ 1

2
~ c (222)

Example: The energy of the orbital electron of the hydrogen atom with l = 0 is

Ee = 3.4250 · 10−18 J which gives an uncertainty of ∆x = 4.6182 · 10−9 m which is

grater than the diameter of the atom with approximately 2 ao = 1.0584 · 10−10 m.

7 Stable and unstable particles.

Particles in the SM are classified as Gauge Bosons, Leptons, Quarks, Baryons and

Mesons. The classification makes no difference between stable and unstable particles.

Unstable particles with energies much grater than the energies of the stable electron

(0.511MeV/c2), positron or neutrino are defined as Basic Subatomic Particles (BSPs),

violating the concept of basic particles which must be the constituents of all not basic

particles. The result is the search for basic particles like the unstable Quarks with

energies above 0.35 GeV/c2.

The approach “Emission and Regeneration” UFT

1. defines as BSPs the electron, positron and the neutrino which are stable particles,

and defines all particles with higher energies, stable or unstable, as Composed

Subatomic Particles (CSPs) which are integrated by BSPs.

2. defines electrons and positrons as focal points of rays of Fundamental Particles

(FPs) which go from infinite to infinite and have longitudinal and transversal

angular momenta. Interactions between electrons and positrons are the result

of the interactions of the angular momenta of their FPs. No carrier bosons are

required to describe interactions between subatomic particles.

3. defines neutrinos as pairs of FPs with opposed angular momenta which generate

linear momenta, and photons as a sequence of pairs of FPs with opposed angular

momenta that generate a sequence of opposed linear momenta.

4. shows that no strong forces are required to hold electrons and positrons together,

which are the constituents of protons and neutrons. The forces between the

constituents electrons and positrons tend to zero for the distance between them

tending to zero.

5. shows that weak forces which are responsible for the decay of atomic nuclei are

electromagnetic forces.
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6. shows that gravitation forces are also electromagnetic forces.

The conclusion is, that all interactions between subatomic particles are electromag-

netic interactions and described by QED. Interactions as described by QCD are simply

the product of the primitive definition of particles as point-like entities which require

carriers to explain their interactions.

7.1 The potentials of the four interactions.

Our SM differentiates between the following potentials to explain interactions between

particles.

• Strong

• Weak

• Gravitation

• Electromagnetic

In [11] the momentum curve between two static charged BSAs (electron/positron)

was derived resulting Fig. 4 and the following regions were defined:

1. From 0 � γ � 0.1 where pstat = 0

2. From 0.1 � γ � 1.8 where pstat ∝ d 2

3. From 1.8 � γ � 2.1 where pstat ≈ constant

4. From 2.1 � γ � 518 where pstat ∝ 1
d

5. From 518 � γ � ∞ where pstat ∝ 1
d 2 (Coulomb)

The static momentum curve of Fig. 4 is part of the potential well of an atomic nu-

cleus as shown in Fig. 5, which can be approximated by a piecewise constant potential

for the analytical analysis in quantum mechanics.

The force on electrons or positrons that move in the defined regions of the potential

well is given by the following equations derived in [11]:

dF̄in =
1

8 π

√
mp rop rot

d

dt

∫ ∞

rr

dH̄n with (223)

d

dt

∫ ∞

rr

¯dHn =
1

2

d

dt
[Hn]

ro
rr

sinϕ dϕ s̄γ − Hn v
ro
r2r

sinϕ cosϕ dϕ s̄γ (224)
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For the regions we have that:

• BSPs that are in region 1 don’t attract nor repel each other. The static force is

zero and no binding Gluons nor strong forces to hold them together are needed.

• BSPs that have migrated slowly from region 1 to region 2 where the potential

groves approximately with d2, are accelerated to or away from the potential wall

by the static force according the charge of the particle and the charge of the

remaining particles in region 1. We can differentiate between:

– BSPs that are accelerated away from the potential wall (region 3) induce on

BSPs of other atoms the gravitation force. The accelerated BSPs transmit

their acquired momentum to BSPs of other atoms (induction) and stop their

movement immediately according the conservation law of momentum. The

force on accelerated BSPs is given with d
dt
[Hn] =

√
mdv

dt
.

– BSPs that are accelerated to the potential wall may tunnel the wall what

results in the decay of the atom with the corresponding radiations. No

special weak force is required.
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• BSPs in the region 5 where the Coulomb force exists, orbit around the atom

nucleus. This is called in the SM the electromagnetic force.

The “Emission & Regeneration” UFT approach shows that all forces are derived

from one Field, the dH field. It also shows that all interactions are of electromagnetic

type and described by QEDs (Quantum Electrodynamics) and that no other type of

interactions are required. It shows that all particles are composed of electrons, positrons

and neutrinos and that particles of very short lifetime are composed particles.
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8 Compatibility of gravitation with Quantum me-

chanics.

The potential in which an orbital electron in an Hidrogen atom with Z = 1 moves is

U(r)Coul = −
(
Z e2

4πεo

)
1

r
= 2.3072 · 10−28 1

r
J with Z = 1 (225)

We know from [5] page 178 that the discrete energy levels for the orbital electron

of the H-atom is

EnCoul
= − m

2~2

(
Z e2

4πεo

)2
1

n2
= 2.1819 · 10−18 1

n2
J (226)

The difference between the energy levels is

∆EnCoul
= 2.1819 · 10−18

[
1

n2
1

− 1

n2
2

]
J (227)

8.1 Quantized gravitation.

In the present approach of “Emission & Regeneration” UFT gravitation is presented

based on the reintegration of migrated electrons and positrons to their nuclei. Ac-

cording to that model the force on one electron/positron of a mass M1 due to the

reintegration of an electron/positron to an atomic nucleus of a mass M2 is given by

Fi =
dp

∆t
=

k c
√
m

√
mp

4 K d 2

∫ ∫
Induction

with

∫ ∫
Induction

= 2.4662 (228)

and the corresponding potential is

U(r)Grav =

(
2.4662

k c
√
m

√
mp

4 K

)
1

r
= 2.3071 · 10−28 1

r
J (229)

If we write the Schroedinger equation with the gravitation potential instead of the

Coulomb potential for the H-atom, we get discrete energy levels simply in replacing

the expression in brackets of eq.(226) with the expression in brackets of eq. (229)

EnGrav
= − m

2~2

(
2.4662

k c
√
m

√
mp

4 K

)
1

n2
= 2.1816 · 10−18 1

n2
J (230)

In the same model of gravitation the number of reintegrating electrons/positrons

for a mass M is derived as ∆G = γG M with γG = 5.3779 · 108 kg−1. The resulting

energy level due to all reintegrating electrons/positrons of M1 and M2 is
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EnGrav tot
= 2.1816 · 10−18 ∆G1 ∆G2

1

n2
J (231)

For the H-Atom M2 is formed by one proton composed of 918 electrons and 919

positrons and M1 is the mass of the electron. The mass of a proton is M2 = mprot =

1.6726 · 10−27 kg and the mass of the electron M1 = melec = 9.1094 · 10−31 kg . We get

∆G2 = 8.9951 · 10−19 and ∆G1 = 4.8989 · 10−22. We get for the energy difference for

orbital electrons at the H-Atom due to gravitation potential

∆EnProton
= 9.6134 · 10−58

[
1

n2
1

− 1

n2
2

]
J (232)

If we compare the factors of the brackets for the energy difference due to the

Coulomb potential of eq. (227) and the gravitational potential of eq. (232), we see

that even between very different energy levels n1 and n2 of the gravitational levels the

energy differences of the gravitation are neglectible compared with the Coulomb.

For the energy difference between two levels n1 and n2 of an atom we can write:

∆EnCoul
±∆EnGrav

= h(ν±∆ν) = 2.1819 ·10−18 [1±∆G1 ∆G2]

[
1

n2
1

− 1

n2
2

]
J (233)

with ∆G = γG M where γG = 5.3779 · 108 kg−1.

Now we make the same calculations for the difference between the energy levels

due to the gravitation potential of the sun with M2 = M� = 1.9891 · 1030 kg and

the earth with M1 = M† = 5.9736 · 1024 kg. We we get ∆G� = 1.0697 · 1039 and

∆G† = 3.2125 · 1033 resulting

∆En�,† = 7.4968 · 1054
[
1

n2
1

− 1

n2
2

]
J (234)

As the earth shows no quantization in its orbit around the sun, two adjacent levels

n1 and n2 must be very large outer levels so that ∆En�,† ≈ 0, similar to the large

outer levels of the conducting electrons of conducting materials. Mathematically we

can write with n2 = n1 + 1

lim
n1⇒∞

∆En�,† = 7.4968 · 1054
[
1

n2
1

− 1

(n1 + 1)2

]
= 0 J (235)

8.2 Relation between energy levels and space.

The compatibility of gravitation as the reintegration of migrated electrons/positrons

to their nuclei is also shown by the following calculations. From eq. (231) we get the

energy difference between two gravitation levels
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∆EnGrav
= 2.1816 · 10−18 ∆G1 ∆G2

[
1

n2
1

− 1

n2
2

]
J (236)

and with the difference between two gravitation potentials at different distances

∆UGrav = G M1 M2

[
1

r1
− 1

r2

]
J (237)

we can write that ∆EnGrav
= ∆UGrav what gives with r1 r2 ≈ r2

∆r

r2
=

2.1816 · 10−18 γ2G
G

[
1

n2
1

− 1

n2
2

]
(238)

For the H-atom with r ≈ 10−13 m we get for the difference between the two first

energy levels n1 = 1 and n2 = 2

∆r =
2.1816 · 10−18 γ2G

G
r2

[
3

4

]
= 7.0926 · 10−17 m (239)

what is a reasonable result because ∆r << r.

Now we make the same calculations for the earth and the sun with r�,† ≈ 150.00 ·
109 m. We get

∆r�,† = 2.1164 · 1032
[
1

n2
1

− 1

n2
2

]
(240)

As the earth shows no quantization in its orbit around the sun, two adjacent levels

n1 and n2 must be very large outer levels so that ∆r�,† ≈ 0, similar to the large outer

levels of the conducting electrons of conducting materials.

8.3 Superposition of gravitation and Coulomb forces.

The “Emission & Regeneration” UFT shows that the Coulomb and the Ampere forces

tend to zero for the distance between electrons/positrons tending to zero. The be-

haviour is explained with the cross product of the angular momenta of the regenerating

rays of FPs that tends to zero.

The induction force is not a function of the cross product but simply the prod-

uct between angular momenta of the regenerating rays of FPs. The result is that the

induction force does not tend to zero with the distance between inducing particles

tending to zero. As the gravitation was defined as the reintegration of migrated elec-

trons/positrons to their nuclei and as a induction force, the gravitation force prevails

over the Coulomb or Ampere forces for the distance tending to zero.

Fig. 6 shows qualitatively the resulting momentum due to Coulomb/Ampere and

Gravitation momenta between an atomic nucleus of a target and a He nucleus.
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Note: The gravitation model of “Emission & Regeneration” UFT is based on a

physical approach of reintegration of migrated electrons/positrons to their nuclei and

compatible with quantum mechanics, while General Relativity, the gravitation model of

the SM, based on a mathematical-geometric approach is not compatible with quantum

mechanics.

9 Table comparing the SM and the ’E & R’ model.

45



SM

E & R

Particle
representation

Force
Carriers Interactions Gauges

Point-
like

Wave
Packet

Focal-point
 of rays of
Fundamental
Particles

Wave
Packet

Gluons
W-Boson
Photons
Gravitons

Strong
Weak
Electromagnetic
Gravitation

Fields

Strong
Weak
Electromagnetic
Gravitation

dH field with
Longitudinal
and 
Transversal
components

Fundamental
Particle with
Longitudinal
and 
Transversal
angular 
momenta

QCD
Electroweak
QED
Gravity Duality

QED

Comment

One field
for all
forces

(Poly-particle)

Model

(Mono-particle)

QM

QM

Classic

Classic

Sub-
division

Four fields,
one for 
each type 
of force

(Long x Long,
Trans x Trans,
Trans - Long) 

Electromagnetic

Figure 7: Table comparing the SM and the ’E & R’ model.

Fig. 7 shows the SM and the ’E & R’ model subdivided in classical physics and

QM. The classic part of the SM with its point-like representation of particles has four

force-carriers, four fields and four interactions. QM based on the classical physics of

the SM has correspondingly four gauge theories.

The classic part of the ’E & R’ model with its focal-point representation of particles

has only one type of force-carrier, only one field and only one type of interaction. QM

based on the classical physics of the ’E & R’ model has correspondingly only one type

of gauge theory, namely QED.

The SM has four fields one for each type of force while the ’E & R’ model has only

one field for all forces and is therfore a UFT.

The SM is a poly-particle model while the ’E & R’ model is a mono-particle model.
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10 Spin, magnetic moment and photon.

10.1 The spin.

According the E&R model, electrons and positrons are composed of Fundamental Par-

ticles (FPs) which have an energy defined by

EFP = hνo (241)

with νo a universal frequency.

The energy of an electron or positron can thus be expressed as

Ee = Ne EFP Ne =
Ee

EFP

=

√
E2

o + E2
p

EFP

=
Es + En

EFP

(242)

where Ne is the number of FPs that composes the electron or positron. For the non

relativistic case we have

Ne =
Ee

EFP

=
Es + En

EFP

=
1

EFP

[Eo + pc] (243)

An orbital electron interacts with the nucleus and has an orbital moment given by

L = me ρ vt = ρ vt Ne
EFP

c2
me =

Ee

c2
= Ne

EFP

c2
(244)

where ρ is the radius of the orbit and vt the tangential speed.

As the nucleus of the atom is also composed of electrons and positrons which are

composed of FPs, the orbital electron can pass or receive FPs from the nucleus. The

number of FPs of the orbital electron can thus vary between

N = Ne ± ∆Ne with ∆Ne = 0, 1, 2, 3, · · · (245)

We get for the total angular moment of an orbital electron for the case of N =

Ne ± 1

~J = me ~ρ× ~vt =
νo
c2

[Ne h ± h] ~ρ× ~vt = ~L ± ~S (246)

where L is the orbital angular moment and S is the spin of the electron.

The quantum number ∆Ne = 0, 1, 2, 3, · · · gives the number of FPs at which the

orbital electron is increased or decreased.

Equation (246) includes the relativistic mass increase due to the definition of the

mass as

me =
Ee

c2
= Ne

EFP

c2
= Ne

h νo
c2

(247)
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Note: According to the shell structure of the Ag atom the individual electron

carries no angular momentum and ~L = 0. That is because there is no moment of

inertia and that the area vector of the orbit aligns immediately parallel to the external

magnetic field. According to the E&R model the energy variation at the electrons is

due to the variation of the number of FPs given by ±∆Ne. For the special case of
~L = 0 only a variation −∆Ne is possible. The variation of the number of FPs produces

a variation of the mass of the electron and consequently a variation of the kinetic

energy.

The splitting of the energy level is the product of the interactions between sub-

atomic particles. There is no need to introduce the postulate of S.Goudsmit and

G.E.Uhlenbeck.

10.2 The magnetic moment.

The energy of FPs are stored in the angular momentum ~h what generates a magnetic

momentum in an external magnetic field.

The charge qFP and the mass mFP of a FP is given with

qFP =
e

Ne

= e
EFP

Ee

mFP =
me

Ne

= me
EFP

Ee

(248)

The magnetic moment of a FP is defined as

~µFP = − qFP

2 mFP

~h = − Ne qFP

2 Ne mFP

~h = − e

2 me

~h = ~µB (249)

where ~µB is the Bohr magneton.

The potential magnetic energy is defined as

Hmag = − ~µ ~B (250)

with

~µ = − gl µB

~l

h
(251)

where ~l is the orbital angular moment.

10.3 The photon.

The photon is defined in the E&R model as a sequence of FPs with opposed angular

momenta. The energy of a photon expressed as a function of the energy of a FP is

Eph = Nph EFP EFP = h νo (252)
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where Nph is the number of FPs that integrates the photon. With Eph = h ν we

get

Nph =
ν

νo
=

c

λ νo
νλ = c (253)

If we take the Hyperfine-shift of ν = 1.42 MHz. for n = 1 between F = 1 and

F = 0 as caused by one FP, so that νo = 1.42MHz., we get that the energy of a FP is

EFP = h νo = 5.88 · 10−9 eV with νo = 1.42MHz (254)

11 Summery of main characteristics of the proposed

model.

The following abbreviations are used:

1. Basic Subatomic Particles (BSPs) are electrons, positrons and neutrinos.

2. Subatomic Particles (SPs)

3. Fundamental Particles (FPs)

The main characteristics of the proposed model are:

• Subatomic particles (SPs) are represented as focal points of rays of Fundamental

Particles (FPs) that go from infinite to infinite. FPs store the energy of the SPs

as rotation defining longitudinal and transversal angular momenta.

• FPs are emitted at the focal point and regenerate the focal point. Regenerating

FPs are the FPs that were emitted by other focal points in space.

• The charge of a SP is defined by the rotation sense of the longitudinal angular

momenta of the emitted FPs.

• The interacting particles for all types of interactions (electromagnetic, strong,

weak, gravitation) are the FPs with their longitudinal and transversal angular

momenta.

• All known forces are derived from one vector field generated by the longitudinal

and transversal angular momenta of fundamental particles.

• All the basic laws of physics (Coulomb, Ampere, Lorentz, Maxwell, Gravitation,

bending of particles and interference of photons, Bragg, Schroedinger) are math-

ematically derived from the proposed model, making sure that the approach is

in accordance with experimental data.
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• Electrons and positrons neither attract nor repel each other for the distance

between them tending to zero. Nucleons are interpreted as swarms of electrons

and positrons.

• The coexistence of protons in the atomic nucleus does not require the definition

of a special strong force nor additional mediating particles (gluons).

• Quarks are composed of electrons and positrons and the charge Q is the relation

between the difference of positrons and electrons of the quark and the total

number of electrons and positrons. Q is the relative charge of the quark.

• The emission of particles from a heavy atomic nucleus does not require the defi-

nition of a special weak force nor additional mediating particles.

• Gravitation has its origin in the linear momenta induced by the reintegration of

migrated electrons and positrons to their nuclei. No special mediating particles

are required (gravitons).

• The gravitation force is composed of an induced Newton component and an Am-

pere component due to parallel currents of reintegrating electrons and positrons.

For galactic distances the induced component can be neglected. A positive Am-

pere component explains the flattening of galaxies’ rotation curve (no dark matter

is required) and a negative Ampere component explains the expansion of galaxies

(no dark energy is required).

• The inertia of particles is explained with the time delay between the emission

and the regeneration of FPs. No special mediating particles are required.

• Permanent magnets are explained with the synchronization along a closed path

of reintegrating BSPs to their nuclei.

• The splitting of the atomic beam in the Stern-Gerlach experiment is explained

with the magnetic field generated by the parallel currents composed of the orbital

electron and the current induced in the atomic nucleus. The magnetic spin is not

an intrinsic characteristic of the electron.

• Relativity deduced on speed variables instead of space-time variables gives the

same equations as special relativity but without the fictitious concepts of time

dilation and length contraction. Also the transversal Doppler effect, which was

never experimentally detected, doesn’t appears.

• The wave character of the photon is defined as a sequence of FPs with opposed

transversal angular momenta which carry potential opposed transversal linear

momenta.
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• Light that moves trough a gravitation field can only lose energy, what explains

the red shift of light from far galaxies (no expansion of the universe is required).

• Diffraction of particles such as the Bragg diffraction of electrons is now the result

of the quantized interaction of parallel currents.

• As the model relies on BSPs permitting the transmission of linear momenta at

infinite speed via FPs, it is possible to explain that entangled photons show no

time delay when they change their state.

• The addition of a wave to a particle (de Broglie) is effectively replaced by a

relation between the particles radius and its energy.

• The Schroedinger equation is replaced by an equation where the wave function is

derived one time versus space and two times versus time in analogy to Newton’s

second law.

• The uncertainty relation of quantum mechanics derived with the new wave func-

tion form pairs of canonical conjugated variables between ”energy and space”

and ”momentum and time”.

• The time independent Schroedinger equation results deriving the new wave func-

tion two times versus space, the same as for the established wave function.

• The new quantum mechanics theory, based on wave functions derived from the

radius-energy relation, is in accordance with the quantum mechanics based on

the correspondence principle.

• All interactions are of electromagnetic type and described by QEDs (Quantum

Electrodynamics) and no other type of interactions are required.

• The gravitation of the present approach “Emission & Regeneration” UFT is com-

patible with quantum mechanics, what is not the case with General Relativity,

which is the gravitation model of the SM.

• Finally the hypothesis is made that the apparent CMB radiation is a gravitational

effect between the mass of the satellite and the signal evaluating part of the

satellite, what would explaining the isotropy of the radiation.
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