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Preface

The Standard Model has passed many steps in the evolution to the
presently accepted version. The main difference between steps consists in
the description of the mechanism about what happens in the space between
attracting or repelling subatomic particles. The first primitive description
postulated the existence of a substance named ether responsible for the
transmission of forces between particles. Then an empty space was pos-
tulated and special carrier particles (photons, gluons, W and Z bosons,
gravitons) for each type of force were introduced as a substitute for the
ether. The methodology used was adapting nature to the postulated model
and not vice-versa.

The problems of the Standard Model have their origin in the very primi-
tive static representation of subatomic particles with the energy of a resting
particle concentrated in a small volume (Point-Like). This representation
forces the introduction of carriers (fictitious particles) to explain interac-
tions between them. All alternative approaches like Strings, Loops, Vortex,
etc., use the same static and concentrated representation and have therefor
the same problems to explain interactions.

Nature gives us a hint how energy can be concentrated in a small point
in space, namely in the focus of rays of photons. Based on this picture,
the proposed approach models subatomic particles such as electrons and
positrons as focal points of rays of Fundamental Particles that are conti-
nously emitted dynamically with light and infinite speed and absorbed
by the focal point. The energy of electrons and positrons is distributed on
their fundamental particles over the whole space and stored as rotations
defining longitudinal and transversal angular momenta (fields). Interactions
between subatomic particles are the product of the interactions of the an-
gular momenta of their Fundamental Particles. The combination of scalar
and vector products between the angular momenta gives the four known
forces (electromagnetic, strong, weak and gravitation). The basic laws of
physics (Coulomb, Ampere, Lorentz, Maxwell, Gravitation, etc.) are math-
ematically derived. This methodology makes sure, that the approach is in
accordance with well proven experimental data.

The main differences between the Standard Model and the proposed
approach are no carriers (bosons), no fictitious math constructs like time
dilation, length contraction and QCD. Gravitation is compatible with QED.
Peer reviewers reject all what differs from the Standard Model, consequently

they reject the proposed approach.
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Abbreviations and special nomenclature introduced.

FP Fundamental particle.

SP Subatomic particle.

BSP Basic subatomic particle (electron, positron and constituent of photon).
CSP Complex subatomic particle (proton, neutron, nuclei of atoms and photon).
LRM Longitudinal rotational (angular) momentum.

TRM Transversal rotational (angular) momentum.

J, Longitudinal rotational (angular) momentum (LRM) of emitted

fundamental particle.

Js Longitudinal rotational (angular) momentum (LRM) of regenerating
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Jn Transversal rotational (angular) momentum (TRM) of regenerating
fundamental particle.

J Transversal angular momentum generated by the longitudinal angular
momentum of two meeting regenerating fundamental particles.

Jm Angular momentum generated by the transversal angular momentum
of two meeting regenerating fundamental particles.

Uy Low velocity of fundamental particle v; =~ c.

Up High velocity of fundamental particle v;, &~ oc.

Ve Emission velocity of fundamental particle.

Uy Velocity of regenerating fundamental particle.

v Velocity of basic subatomic particle (BSP).

© Emission angle of fundamental particle.

Y Regenerating angle of fundamental particle.

Q@ Angle between emitted and regenerating fundamental particles.

6] Angle between regenerating fundamental particles.

dE; Energy stored in the longitudinal rotational momentum of
regenerating fundamental particle.

dE, Energy stored in the transversal rotational momentum of
regenerating fundamental particle.

E Relativistic energy of a basic subatomic particle (BSP).

H Square root of the relativistic energy of a basic subatomic particle.

dk Space distribution function of the relativistic energy F of a BSP

and of its square root H.
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Part I Postulates and definitions

A space with Fundamental Particles with angular momenta is postulated and their
interactions defined in such a way, that linear momenta on Subatomic Paticles are

generated.

1 Methodology.

As a mathematical theory, physics should have a pyramidal shape, where few postulates
at the top allow the deduction of all known laws from top to bottom. Each law in the
theoretical building, expressed as an equation, is deduced from equations that are
placed at a higher level. The deduction of laws from equations that are placed at the

same level or below is not allowed.

A 3
’ .
U

,'Fundamental “
&  particles L}
q A Y
o4 Interactions between s
/, fundamental particles \

Basic laws (Coulomb, Ampere,
Lorentz, Maxwell, Gravitation)

Laws with state variables (Thermodynamics)

Particle wave postulate (de Broglie)

Quantum mechanics (Schroedinger)

——— yoeoudde pasodold —— ———

Experimental efforts to detect fundamental particles (scattering)

Theoretical efforts to Infer interactions between fundamental particles
postulating the invariance of wave equations under gauge transformations

— = soIsAyd weassulep ——)

Figure 1: Methodology

Figure 1 shows a schematic comparison between the methodology used in main-



stream physics and the proposed approach. The standard theory starts formulating
mathematically the basic laws for individual particles, namely, Coulomb, Ampere,
Lorentz, Maxwell and Gravitation. At a second level thermodynamic laws are intro-
duced to describe assemblies of particles with state variables. Then the particle’s wave
is postulated (de Broglie) to explain the analogy between diffraction patterns obtained
with electromagnetic rays and rays of particles. The particle’s wave allows the def-
inition of differential equations of the wave function to describe mathematically the
quantized behavior of particles in nature (Schroedinger). Up to this point of the the-
ory, no explanation is given about the origin of the forces and momenta obtained by

measurements between particles. Efforts made to find explanations are:
e of experimental nature, scattering particles in particle accelerators and

e of theoretical nature, trying to infer interactions between fundamental particles

postulating the invariance of wave equations under gauge transformations.

The present approach intends to explain what happens in the space between two
charged particles or two masses that generates the forces we measure at the particles.
The methodology followed starts postulating fundamental particles (FPs) based on the
idea, that the energy of a subatomic particle like the electron is not concentrated at a
point but distributed in space and, that the energy is stored in fundamental particles
that are emitted continuously from a focal point in space and to which regenerating
fundamental particles continuously return. FPs store the energy as rotations which
are independent of coordinate systems and which define longitudinal and transversal
angular momenta. In a second step the interactions between FPs are postulated as
interactions between their angular momenta, which mathematically is expressed as
scalar and vector products. Finally, the interaction laws between FPs are determined
in a recursive process so that the fundamental laws of physics, namely, Coulomb,
Ampere, Lorentz, Maxwell and Gravitation can be derived. The methodology makes

sure, that the approach is in accordance with experimental data.



2 General theoretical part.
The present theory is based on the following postulates and physical laws:

e Postulates that define a space through the definition of fundamental particles

and its characteristics.
e Postulates that define the interactions of fundamental particles.

e Relativistic energy of a moving particle

p=-"< (1)
.

e Inertial force

dp , m v

In this section, fundamental particles (FPs) with longitudinal and transversal an-
gular momenta are postulated, filling the whole space.

Basic subatomic particles (BSPs) are defined (electron, positron and neutrino as
a constituent of the photon) and laws are postulated that describe the generation of
angular momenta when fundamental particles cross.

With the idea, that basic subatomic particles emit and are continuously regenerated
by fundamental particles, an equation for the distribution in space of the energy of a
BSP is introduced.

The regenerating fundamental particles and the requirements their angular mo-
menta must comply to generate linear momenta are defined.

The energy of a BSP that moves with constant velocity is distributed at the longi-
tudinal and transversal angular momenta of its regenerating fundamental particles.

The vector dH is defined.

The probability equation for the crossing in space of emitted and regenerating
fundamental particles is defined, and the balance of energy and angular momenta is
shown.

The transition of BSPs with v < ¢ to BSPs with light speed is deduced and the
photon is introduced as a complex subatomic particle (CSP).

The different forms of polarizations for BSPs are defined.



2.1 Postulates that define a space with fundamental particles
(FPs) with longitudinal and transversal rotational mo-

menta.

e Postulate 1: A space exists with two types of fundamental particles (FPs)
that have strongly differing velocities designated by vy, (high) and v; (low). The
FPs have longitudinal rotational momenta (LRMs) and move in a straight line
relative to a given system of coordinates. A right rotation of the LRM in the
moving direction of the FP is defined as positive LRM and designated by J,.©. A
left rotation of the LRM in the moving direction of the FP is defined as negative
LRM and designated by J,~.

Normal (orthogonal) to its moving direction the FP can have transversal rota-
tional momenta (TRM) designated by J,,. In a neutral space the TRM of the FPs
are not oriented in a special direction and their vector sum over time or space

neutralize.

e Postulate 2: Through each point in the space the two types of FPs flow contin-
uously in and from all directions. When two FPs cross in space, their directions

and velocities don’t change.

e Postulate 3: In the same space there are focal points where the FPs change
their velocities and the rotations of their LRM. These focal points are the points
where our standard theory assumes that the basic subatomic particles (BSPs),

namely the electrons and positrons are located.
The concept is shown in Fig. 2.

Fig. 2 shows the emitted FPs with their longitudinal angular momenta .J, and
the regenerating FPs with their longitudinal and transversal angular momenta .J;
and J, respectively. The configuration has an axial symmetry around the speed

vector 0.

The transversal angular momenta follow the right screw law in the direction of
the speed v, independent of the charge of the BSP. Our standard theory defines
the magnetic field H in the right screw direction for positively charged particles

and in the left screw direction for negatively charged particles.
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Figure 2: Particle represented as focal point

The BSPs are classified according to the change of the velocity of their FPs at

the focal point in accelerating and decelerating BSPs.

The concept is shown in Fig. 3.

1. Accelerating basic subatomic particles radiate fundamental particles (FPs)
with high velocity v, = v, (e=emission) and are regenerated by FPs with
low velocity v; = v, (r=regeneration).

2. Decelerating basic subatomic particles radiate fundamental particles (FPs)
with low velocity v; = v, (e=emission) and are regenerated by FPs with

high velocity v, = v, (r=regeneration).

The BSPs are also classified according to their longitudunal rotational momenta

in positive and negative BSP.

1. Positive basic subatomic particles transform negative LRM J,~ in positive
LRM J*.

The concept is shown in Fig. 4.

2. Negative basic subatomic particles transform positive LRM J.* in negative
LRM J,.

The concept is shown in Fig. 5.
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e Postulate 4: The FPs that are radiated by the basic subatomic particles have
no transversal rotational momenta .J, and they possess well defined radiation
velocities relative to a system of coordinates that is fix to the basic subatomic

particles.

1. Accelerating basic subatomic particles emit fundamental particles (FPs)
with high velocity v. — oo relative to a system of coordinates that is fix to

the basic subatomic particle.

2. Decelerating basic subatomic particles emit fundamental particles (FPs)
with low velocity v, = c relative to a system of coordinates that is fix

to the basic subatomic particles.

2.2 Postulates that define the interactions of fundamental

particles.

e Postulate 5: The FPs with the longitudinal rotational momenta .J, emitted by
a BSP generate, when they cross with the regenerating FPs of the same BSP,
longitudinal .J, and transversal .J, rotational momenta on the regenerating FPs.
The sense of rotation of the transversal rotational momenta .J,, is the direction in

that the vector J; must move over the smallest angle to coincide with the vector

J. of the BSP.

The FPs emitted by a BSP deliver the energy stored in their LRM J. to the
LRM J, and TRM J, of the regenerating FPs. The distribution of the energy
between the LRM and the TRM of the regenerating FPs is a function of the angle

a between the velocity vectors of the emitted and regenerating FPs.

The concept is shown on Fig. 6.



Figure 6: Speed diagram with regenerating longitudinal J; and transversal J,
rotational momenta for a basic subatomic particle that moves with v

In Fig. 7 the convention for unit vectors of emitted and regenerating fundamental

particles is shown.

Az

Figure 7: Unit vector s, for an emitted FP and unit vectors 5 and n
for a regenerating FP of a BSP moving with v # ¢



e Postulate 6: If two FPs from different BSPs cross, their LRM J, generate two
opposed TRM J&) that are defined by the cross product of the square roots of
their original LRM. The sign of the generated TRM is opposed to the product of
the signs of their original LRM.

T = sign(J,,) sign(J,) (v /s, 51 % /s, 52) (3)

For the two generated transversal rotational momenta (TRM) we have that

Je) — _ jn(;) (4)

ni

The concept is shown on Fig. 8.
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Figure 8: Generation of transversal rotational momenta J,(Lf)
out of longitudinal rotational momenta J,
of FPs that belong to different BSPs

The vectors 5; und s, are unit vectors with the direction of the velocity vectors
of the FPs.

The upper (s) means that the rotational momenta were generated by longitudinal

rotational momenta.



The sign of the TRM J*) is a function of the signs of the LRM of the FPs.
If the LRM of the FPs that cross have different signs, than opposed TRM jn(s)

are generated on the FPs that rotate to each other if seen against the moving
direction of the FPs.

If the LRM of the FPs that cross have the same signs, than opposed TRM T
are generated on the FPs that rotate from each other if seen against the moving
direction of the FPs.

Postulate 7: If two FPs from different BSPs cross, their TRM .J,, will generate
two opposed rotational momenta J™ that are defined by the cross product of the
square roots of their original TRM. The sign of the generated rotational momenta
is given by the product of the signs of their original LRM. Additionally TRM

T according to postulate 6 are generated.

T = sign(J,,) sign(J,) (/T A1 X \/Tos 7i2) (5)
with

J1(n) = = jz(n) (6)

The concept is shown on Fig. 9.

The vectors n; und ng are unit vectors orthogonal to the direction of the velocity
vectors of the FPs.

The upper (n) means that the rotational momenta were generated by transversal

rotational momenta.

The rotation of the rotational momenta jz(n) is opposed to the rotational mo-
menta jl(n) and they can be expressed by their longitudinal and transversal com-

ponents.
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Figure 9: Generation of rotational momenta JZ-(")
out of transversal rotational momenta .J,,
of FPs that belong to different BSPs

e Postulate 8: If a FP 1 with an angular momentum .J; crosses with a FP 2 with
a longitudinal angular momentum jSQ, the orthogonal component of J; to jSQ is
transferred to the FP 2, if at the same instant between two other FPs 3 and 4

an orthogonal component is transferred which is opposed to the first one.

2.3 Energy distribution of a basic subatomic particle (BSPs)

that moves with the velocity v.

Basic subatomic particles like the electron or the positron, that are at the time ¢t = 0
at the point 1 with x = 0 and move with the velocity v, disintegrate by radiating
fundamental particles of one of the two velocities and are regenerated, at the point 2
with Z = v t at the time ¢, by fundamental particles of the other velocity. The part of
the total radiating energy of the basic subatomic particle that is in the conus with the

rotational angle ¢ and the thickness dp is given by the following expression:

m c? c

NEEEk

Vs Uy
— X =
|Ue |0y ]

dE = W dy dE = FE dk (7)

with

11



The concept is shown on Fig. 10.

Figure 10: Space diagram with emission v4ts and regeneration v,t, distances
for a basic subatomic particle that moves with v

dr describes the part of the total energy E of a basic subatomic particle that moves

with the velocity v contained in the angle dep.

ve is the emission velocity of the fundamental particles relative to a coordinate
system that is fix with the basic subatomic particle that moves with v. The velocity
ve is equal to v, — oo for accelerating BSPs and equal to the speed of light ¢ for
decelerating BSPs.

vs is the velocity of the emitted fundamental particles relative to a coordinate

system in which the BSP moves with the velocity v.

vs = /2 + 0% — 2 v, v cosp 9)

v, is the velocity of the fundamental particles that regenerate the BSP relative to a
coordinate system in which the BSP moves with the velocity v. For accelerating BSPs

v, = c is the velocity of light and for decelerating BSPs v, — oo.

W represents the probability that emitted fundamental particles cross with regen-
erating fundamental particles. For a basic subatomic particle that moves with constant

velocity v the whole emitted energy must equal the whole regenerating energy to con-

12



serve the particle, so that the probability for the whole particle is W = 1.

2.4 Deduction of the angle o between the speed vectors v, and

Uy .

Note: This subsection can be skipped in a first approache.

The time t that a BSP needs from point 1 to 2 must be equal to the time the
emitted FP needs from the moment of its emission at ¢t = 0 to the moment it crosses
with the regenerating FP, plus the time the regenerating FP needs then to arrive at
T ="t.

The concept is shown in Fig. 10 and Fig. 11.

Fig. 11 shows the regeneration of a BSP at point z = 0 for two rays that were

emitted at vt and vt

t'=t+At

X —> —00

Figure 11:  Space diagram showing the regeneration of a BSP

O<=p<=m

— Ve—Y —
§ = % + arctan [vﬁv cot 5 ]

2 _ .2 4 2
v =v;+v*—2v.v cos(m — )
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t, =t —t,

Vit — t5)? = vt + 022 — 2(vt) (vst,) cos €

(V2 — D)2 + (2uugt cos € — 20t + (V2 —vH)t2 =0

The solution of the second order equation gives .

¢ =72 — & +arctan [ﬁ cot %}

a=9+¢

The crossing angle « is independent from the selected time ¢ and varies as follows.

v=20 oa=T

O<=p<=m (10)
O<=v<=c T>=a>=7F

A BSP is regenerated at the point « = 0 by all the rays the same BSP has emitted

from x — —o0 to z = 0.

2.5 Determination of a more simple distribution function drx(y).

Note: This subsection can be skipped in a first approache.

The distribution function dk(y) is not adequate for analytic manipulation because
of the complicate dependence of a(y). In what follows a more simple expression dr(y)
will be introduced.

The equation (7), that defines the distribution of the energy, we can write with
W =1 as follows

2

dE = —=— = % gna dy (11)
[1_ w2 20 ve
2
Because of
T m c? c T v
/ dE = ——— we have / — sinadp =1 (12)
=0 12 2Ve Jpmo V

C2
For v = 0 we have that f;zo dE = m 2, and we select from the many possible

functions for f;:() f(p) dp =1 the following function, selection that shows to be right

in all what follows.

/ sinpdp=1  (13)
©

=0

DN —

™ 1 T
/ dE=mcd=mc* = / sinp dp because
©=0 2 »=0
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2.5.1 Analysis for BSPs with v — 0.

For v = 0 we have also that v, = v,, valid for BSPs with v, = ¢ as for BSPs with

v, — 00, what leads to the conclusion that

. sina 1 |
11}1_r>r(1) = sing (14)
and for dk we get
1 .
d/-i%§Wsm<pdg0 v=0 (15)

2.5.2 Analysis for accelerating BSPs with v, — oo.

For accelerating BSPs we have to differentiate between v = 0 and v # 0.

For v = 0 results that:
If for v, = ¢ the speed v, — oo then t, — 0, and for v = 0 results that

Ty =Up typ = Te = Ve ts and dr, — dr, (16)

It results then that

Y= and dy = dp (17)
For v # 0 results that:
Ty = Up by £ T = Vg tg and dr, # dr, (18)
and that
v#Ee and  dp #dp (19)

Now we analyse dk for v < ¢ and v = ¢ — Av with Av < c.
We start with

dri = — ° sina W dp (20)

20 v,
a) With v, — oo it is vs & v, and with v < ¢ the angle a can be approximated by
(see Fig. 12)

arxT—— sing (21)
c

15



and we have that

2
dr ~ =< sin [W ~ Y sin gp} W sing dy (22)
T c
Because of
sin [7? — % sin <p] = sin [ Y sin go} ~ 2 sin (23)
c c c
we have that
1 :
dk =~ 5 W sin p dy (24)

b) If we now take v = ¢ — Av with Av < ¢ the angle a can be expressed by
(see Fig. 12)

armt—p for 0<p<7/2 and arxp for m/2<¢p<T (25)
we get sina = sin g for 0 < ¢ < 7 and for dk

1
dk =~ 5 W sinp dp (26)

16



Fig. 12 shows the relation between «, ¢ and the speed v for accelerating BSPs
where v, — oo and v, = c.

o [rad]

% i

o [rad]

Figure 12:  « as a function of ¢ and v for accelerating BSPs
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Fig. 13 shows the relation between v, ¢ and the speed v for accelerating BSPs.

3.5

v [rad]

A T

o [rad]

Figure 13: 1 as a function of ¢ and v for accelerating BSPs

2.5.3 Analysis for decelerating BSPs with v, — oc.

If for v, = ¢ the speed v, — o0, then ¢, — 0 and

Ty = Uy typ — Te = Vg g and dr, — dr.

We conclude that for decelerating BSPs

Y= and dy = dp (28)

Now we analyse dk for v < ¢ and v = ¢ — Av with Av < c.
We start with

18



di = — 2 sina W dp (29)

20 v,

a) With v, = ¢ and v < ¢ it is vs & ¢ and the angle a can be approximated by
(see Fig. 14)

v

arT—— sing (30)
c
and we have that
dr ~ - sin [7? — Y sin gp] W dy (31)
2v c
Because of
sin [7? ~ Y sin <p] = sin [ Y sin gp} ~ sin ¢ (32)
c c c
we have that
1 :
dk =~ 5 W sinp dp (33)

b) If we now take v = ¢ — Av with Av < ¢ the angle a can be expressed by
(see Fig. 14)

o~ % (m+ ) or sin o & cosg (34)
and
vy = /U2 + 02 =20, v cosp R 2c sing (35)
we get
dk ~ % W sin ¢ dy (36)

Conclusion: The function dk has the following important characteristics:

e The equation for dk is the same for the whole speed range 0 < v < ¢ for acceler-

ating and decelerating BSPs.

e The function dk gives the energy distribution in space, which must be the same
for all reference systems. This is expressed by the independence of dx from the

speed v.

e The function dk has a rotational symmetry around the velocity vector o.
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e The function dk has the following symmetry, which is very important for the
demonstrations of the conservation laws

dri(p) = dr(m — @) (37)

Fig. 14 shows the relation between «a, ¢ and the speed v, for decelerating BSPs
with v, = ¢ and v, — 0.

o [rad]

1.6 ‘
0

i

o [rad]

Figure 14: « as a function of ¢ and v for decelerating BSPs
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Fig. 15 shows the relation between v, ¢ and the speed v for decelerating BSPs.

35
T
3 - -
251 -
2 - -
g ~°
> 20
15F N .
1 - -
0.5 i
0 1
0
% T
¢ [rad]
Figure 15: 9 as a function of ¢ and v for decelerating BSPs
Miscellaneous
If we define
v
— =sina, 38
~ =sina (38)

with a,, the minimum of the curve o/ for a given speed v, we get for decelerating
BSPs with v, = ¢ and for accelerating BSPs with v, — 0o, expressions that depend

only from angles.

Fig. 16 shows the angle «,, as function of the speed v, angle that is the same for

accelerating and decelerating BSPs.
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am[rad]

1.4

0
v [m/s]

Figure 16: a,, for accelerating and decelerating BSPs

Note: The energy distribution function dx was selected between several possible
functions like

2 2 5 5
dE =25 29 % o U Wosingde  dE=Edx (39)
f1_w2 v || |0,|
with
2
dk = — W sin” ¢ dp (40)
s

With this distribution the force between two static BSPs expressed as rotor of the
field dH,, is zero for ¢ = 0 which is not the case for the distribution selected for the
present approach (see 17.2).

2.5.4 General observations to the energy distribution of BSPs.

In sec. 2.5 we have introduced the function dk for the energy distribution in space for

a BSP.

For an isolated BSP with v = 0 the distribution of the energy is point symmetric

with no privileged direction and described by

22



This is not expressed with

drk =

17, )
572 dr, sinp (42)

that is also valid for v = 0 and where we have a privileged direction defined by
@ =0.

We are not interested in isolated particles without interactions. Privileged directions
exist always we have more than one BSP and are defined by the connecting directions
of the BSPs.

We have also seen that all interactions at v = 0 between BSPs are generated by
accelerations of the BSPs in the connecting directions.

This explains why the equation

1
dk = =
2r

To
_2

dr, siny (43)

is also valid for v = 0 where the privileged direction is the connecting line to the
other BSP.

2.6 Energy of a BSP that moves with constant velocity v.

To obtain the total energy of a basic subatomic particle that moves with constant v, the
equation (7) of section 2.3 for dF must be integrated over the whole spacial coordinates.
As dFE represents the Energy in the angle dy that has a rotational symmetry, the

integration goes from ¢ = 0 to ¢ = 7.

\/71;22@/

W dy (44)

Calculations.

To calculate the energy we assumed as low speed v; = ¢ and as high speed for the
fundamental particles v, = 10'7-¢ 7 and used the mass of the electron. The deviation
in percent between F,,,o and E.q. in the range 0 < v < ¢ was less than 1075. The
results were the same for accelerating and decelerating BSPs.

Note: With the energy distribution of eq.(39) and a low speed v; = ¢ and a high
speed of v, = 10'7 - ¢ 7, the deviation in percent between E,,s; and Feq in the range

0 < v < ¢ was less than 10712,
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2.7 Linear momentum p of a BSP that moves with constant

velocity v.

The linear momentum of a basic subatomic particle that moves with constant velocity

v is given by

B _ v
D= / dp = pr dE (45)
with
dp= 20 C 1 Y Ul gy dp = p dk (46)
12 2v | |7 |y |

The equation is composed by the total linear momentum of the BSP and a dimen-
sionless factor that gives the part of the linear momentum corresponding to the angle
de.

Calculations

To calculate the linear momentum we assumed as low speed v; = ¢ and as high
speed for the fundamental particles v, = 107 - ¢ % and used the mass of the electron.
The deviation in percent between p,,,s¢ and peqe in the range 0 < v < ¢ was less than

107, The results were the same for accelerating and decelerating BSPs.

2.8 Energies stored in longitudinal rotational momenta J, and

transversal rotational momenta J, of regenerating FP.

We start with the total energy of a BSP with constant v.
E=\/E; + E2 (47)
with

9 muv

E,=mc E,=pc and  p=-—= (48)

and through differentiation we get

_ E,dE, + E,dE,

VE: + B}

dE

We define

24



E, dE, _ E,dE,

CVE T I

and get
B =dE, + dE,  with dE,=cdm and  dE, = ——— dm
Through integration we obtain
E? E?
E=E,+E, with F,=— and E, = P

From
m c? & Vs Uy
dE = —— — —| W dyp
[1_ w2 2V |Te | |0
02
and
m c?
F = =LK + E,
'U2
el
results that
E? Us
dE, = ——— & | Y% dE, = E, dr
VE2 + Eg 2v \ve|
and
E? U
dE, = ———+ & | % dE, = E, dx
VE? + EZ 20 | |o]

(50)

(51)

(53)

(54)

(56)

The current densities o, and o, of the fundamental particles are proportional to

their velocities v, and v,.

Os = Qs Us and Or = Qr Ur

(57)

The energy of a BSP is stored in the rotational momentum of the emitted and

25

regenerating fundamental particles. The energy of a BSP is continuously transferred
from the LRM of the emitted FP to the LRM and TRM of the regenerating FP. The



energy flows continuously from FPs with one velocity to FPs with the other velocity
(vn / 1)

The equation to calculate the energy F, from E; and E, is

E,
Ep=14 VE VEy (58)
2.8.1 Common angular velocity v, for all FPs.

If we assume that the longitudinal and transversal angular momenta of the regenerating
fundamental particles from an isolated basic subatomic particle have a common angular

velocity v, we get

AE.=v,J, AE,=v,J, AE,=uv,., (59)

Ne Ng Nn
Ec=v,Y Joo Bo=v,) Jo, E.=v,) (60)
where N., N, and N,, are the corresponding numbers of AE,, AF, and AF,.

The concept is shown in Fig. 17.

AZ

Figure 17:  Spacial representation of L-(J,) and T-(J,,) rotational momentum
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If we now define equivalent rotational momenta J, J, and J, so that we obtain

g Jp (61)

and that

E=E.=E, + E,=\/E2 + E2=vy\[J2 + J2=v, T =1, J (62)

then we get

J=\J2+ 2 and T=Y J.o=> J.o+ > (63)

a relation between the orthogonal rotational momenta J; and J,, of the regenerating

FP and the equivalent rotational momenta .J, J, and .J, of the basic subatomic particle.

If we consider the axial symmetry of the rotational momentum .J, we obtain the

vector sum

> =0 (64)

Also for v = 0 the vector sum of J; is

d JL=0 (65)

If all FPs have the same angular momentum Jgp we get

J=N.Jpp =N, Jpp + N, Jpp and  N.=N, + N, (66)

where now N, is the number of the total emitted FPs, N, the number of the total
regenerating FPs with longitudinal angular momenta and N,, the number of the total
regenerating FPs with Transversal angular momenta.

For the energy we have

VgJ:Ne JFP I/g:NS ']FP Vg + Nn JFP Vg or E:EEZES -+ En (67)

where Erpp = Jpp v, is the energy of one FP.
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2.8.2 Common angular momentum J, for all FPs.

If we assume that the longitudinal and transversal angular momenta of the regenerat-
ing fundamental particles from an isolated basic subatomic particle are all equal to a

common angular momentum J, we get

AB,=J,ve ABE,=J,v, AE,= J,u, (683)

and

NTL

Ne Ns
E.=Jy» Ve Eo=1J> v, E,=1J> uw, (69)

where N., Ny and N,, are the corresponding numbers of AE,, AF, and AF,.
If we define equivalent angular frequencies v, v, and v, so that we obtain

E=J,v  By=Jyv, E,=J,u (70)

and

E=BE.=E, + B, = /B + E2=J, /v + v2=vJ, (71)

then we get
v=/vi+ v and V:Z l/eizz Vs, —i—Zl/m (72)

a relation between the angular frequencies v, and v, of the regenerating FP and
the equivalent angular frequencies v, v, and v, of the basic subatomic particle.

If all FPs have the same angular frequency vpp we get

v=N.,vpp=N;vep + N, Vpp and N.=N, + N, (73)

where now N, is the number of the total emitted FPs, N, the number of the total
regenerating FPs with longitudinal angular momenta and N,, the number of the total
regenerating FPs with Transversal angular momenta.

For the energy we have

VJg:Ne Vpp Jg:NS Vrpp Jg + Nn Vpp Jg or E:Ee:ES + En (74)
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where Epp = vpp J, is the energy of one FP.

2.9 Definition of regenerating fundamental particles.

As regenerating fundamental particles of a BSP that moves with constant velocity v
in a space that is not influenced by other BSPs, we define those FPs of the space that

comply with the following requirements:

1. they are of the opposite type compared with the emitted FPs. This means, that

they have from the two possible velocities vy, or v; the opposite one.

2. they move in the direction in which they meet emitted FPs with the same velocity
v, and under the same angle « from r, = oo to r, = r,, where r, is the radius of

the nucleus of the basic subatomic particle.

The concept is shown on Fig. 18.

Yarlle

[ =—0 t2 tl t:O
- i

Figure 18: Regeneration of a particle at ¢ = 0
due to emissions at £t < 0 and ¢; <0

The probability to meet in the space fundamental particles that comply with the

first requirement is

w, =1 (75)
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The emitted FPs that the regenerating particles meet at the trajectory to the nu-
cleus of the BSP, were emitted by the same BSP during the time ¢ = —oo to t = 0.
The LRMs J; and TRMs J,, that are generated on the regenerating FPs when they
meet with the emitted FPs at the trajectory to the nucleus of the BSP are all identic.
These regenerating FPs transport with their rotational momentums the energy that
regenerates the basic subatomic particle.

Fundamental particles of the opposite type than the emitted one, that move in
other directions, meet on their trajectory emitted FPs that have different velocities v,
and under different angles ae. The generated LRMs and TRMs on these trajectories are
not identic and don’t contribute to the regeneration of the basic subatomic particle.

The exchange of energy between emitted and regenerating FPs is given by the

following equation

Vgde = VgJs + vy, (76)

with J, the longitudinal rotational momentum of the emitted FP and v the common

angular velocity.

For v = 0 only the FPs of the opposite type than the emitted FPs that move on
radial trajectories to the nucleus of the basic subatomic particle, meet permanently
emitted FPs with the same velocity v; = v, and under the same angle o = 7.

Only on those FPs of the opposite type that move on radial trajectories to the
nucleus of the basic subatomic particle, identical regenerating LRMs are produced
along their trajectory, while on those FPs that move in other directions different LRMs
are produced along their trajectory.

It is important to note, that while the FPs of the other type are equally distributed
in the space and the probability to meet them is therefor w, = 1, the regenerating
FPs with the LRM J, and TRM J, move on radial trajectories to the BSP and the
probability to meet them is therefor

T'o
-2
T’f‘

dr, (77)

Wy =

2.10 Requirements for the generation of linear momentum p

on basic subatomic particles (BSPs).

The requirements that must be fulfilled by rotational momentums of fundamental par-

ticles to generate linear momentum p on a BSP are:

1. The rotational momentums must form pairs with the same amplitude and with

parallel but opposed angular velocities.
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2. The direction orthogonal (normal) to the plane that contains the opposed angular
momentums and that goes through the center of the circle to which the opposed

rotational momentums are tangential, must go also through the BSP.

The concept is shown on Fig. 19.
Regenerating direction

_--" Normal direction

Regenerating direction

J

Figure 19: Symmetry requirements for generation of linear momentums

Note: The generation of linear momentum out of a pair of opposed angular mo-

mentum is similar to what can be observed when a cyclone and a anticyclone meet.

The pair of opposed transversal rotational momentum from a BSP that moves
with constant velocity v, comply with the requirements for the generation of linear
momentum p in the direction of the velocity v.

Note: Isolated FPs have only angular momenta, they have no linear momenta.
Linear momentum is the product of the energy stored in FPs with opposed angular
momentum as previously defined. When FPs meet in space they interact changing the
orientation of their angular momenta.

The concept is shown on Fig. 20.
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Moving BSP

v

Vector pro duct between square roots of

emitted longitudinal and regenerating

longitudinal angular momentums

v

Symmetric transversal angular

momentums on regenerating

fundamental particles

v

Linear momentum
of the moving BSP

Figure 20: Generation of linear momentum at a moving BSP

2.11 Enmnergy balance and rotational momentum balance be-

tween FPs of a BSP that moves with constant v.
2.11.1 Energy conservation

The energy flow between the fundamental particles of a basic subatomic particle must
not violate the energy conservation principle.

The total energy of a basic subatomic particle that moves with constant velocity
v must remain unchanged. This means that the energy stored in the longitudinal
rotational momentum J, of an emitted FP must be transferred to the rotational mo-
mentums of the regenerating FP when they meet and regenerate the BSP. This means
that

Vgde = VgJs + vgdy (78)

The concept is shown on Fig. 21.
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|

Figure 21: Balance of energy and rotational momentum

2.11.2 Conservation of the rotational momentum.

To demonstrate the conservation of the rotational momentums we assume that all the
rotational momentums of the FPs that participate on the flow of energy of a BSP that
moves with constant velocity v have the same angular velocity v,.

We make use of the function dr(p) = dk(m — ¢) and write

/ ’

dE =v,J. = E dk(p) = E ds(m — ¢) = 1,J, Jo=J, (79)
dE, = v,J, = B, dk(p) = E, dr(t — ¢) = v,J, Jo=J, (80)
dE, = v,J, = B, dk(p) = B, ds(t — @) = v,J, Jp=J, (81)
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For a plane that contains the axis of the axial-symmetric configuration we have

Jo=—J Jy=—J, Jp=—J (82)

The whole process is dynamic where at the same instant opposed rotational mo-
mentums are generated and annihilated, so that the sum of all rotational momentums
remain equal zero. At the nucleus, opposed J, rotational momentums are generated
while at the same instant opposed J. rotational momentums are transformed in op-
posed J; and J, rotational momentums. At the same instant during the regeneration
of the nucleus, opposed J; and .J,, rotational momentums are annihilated.

Note: There is a strong coupling between the opposed rotational momentums .J,
so that they are generated and annihilated at the same instant, independent of the

distance between them (entanglement).

2.11.3 Conservation of the linear momentum p.

The linear momentum p is a measurable variable of a BSP, generated by rotational
momentums of the regenerating fundamental particles of the BSP when they fulfill the
requirements for generation of linear momentum. The conservation of linear momentum
has no validity for fundamental particles. They maintain, according to their definition

the direction and velocity when they meet with other fundamental particles.

2.12 Basic subatomic particles that move with light speed.

2.12.1 Energy and linear momentum of a basic subatomic particle that

moves with light speed.

Up to now we have seen basic subatomic particles that move with velocities smaller
than the speed of light.

We start with the energy equation of a basic subatomic particle.

m02 C
_2 2

c2

Us Uy

dE = W dy (83)

’UT|

with

———=F,+E, and W= (84)

and
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E? E?
E,=——<=2  gud E,=—— % (85)

 JEI+ E? " JEI+ E?

with

> and By=———c (6)

c2

and we define that for v — ¢ and the rest masse m — 0

Eiﬂo —1)2 = M (87)
v—C — c_2
with m, the masse at light velocity.
We obtain, that
E,—0 and E,—m.c (88)
and
E,—0 and E, = m. (89)

For v — ¢ the longitudinal rotational momentum .J; — 0 and only the transversal
rotational momentum J, remain. The total energy of a basic subatomic particle with
light speed is stored in the transversal rotational momentum. Longitudinal rotational
momentums don’t exist and the particle does not emit FPs and is not regenerated
by FPs. The transversal rotational momentums fulfill the requirements for generation
of linear momentum in the direction of propagation or opposed to it. Due to the
non existence of longitudinal rotational momentums they can simultaneously fulfill the
requirements for generation of linear momentum in a direction that is transversal to
the propagation direction.

An equivalent representation for the transversal rotational momentums responsible
for the linear momentum pc” parallel to the propagation direction, is its tangential
arrangement on a ring that is in a plane orthogonal to the propagation direction. The
concept is shown in Fig. 22.

The vector sum of the transversal rotational momentums along the ring, that we

designate with 0l must give zero. So we have that

Z J,=0 and Ell=m) = ]{dEn = Z Vu Jn (90)
I

oll oll

The linear momentum 1is
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ny,

A2

t—» — Bl r—>
py_pc _pZ py

Figure 22: Photon composed of two basic subatomic particles
with opposed potential transversal linear momentums p,

1
pl=mle=_ fas, (o1)

An equivalent representation for the transversal rotational momentums responsible
for the linear momentum p;- orthogonal to the propagation direction, is its tangential
arrangement on a ring that is in a plane that contains the propagation direction.

The vector sum of the transversal rotational momentums along the ring, that we

designate with 0+ must give zero. So we have that

Z J,=0 and E+f =m? CQZ%CZE”:Z Uy Iy, (92)
L oL

oL

The linear momentum 1is
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1
pe=m; =~ 7{ dE, (93)
iR

c

For the total energy and the total linear momentum we have that

[EP=[ENP+[E P [pP=[p]P+[p ) (94)

with

[me ]2 =[md P+ [mg (95)

C c

Note. The defined basic subatomic particles that move with light speed don’t emit
and are not regenerated by fundamental particles. Their existence is independent from
the space in which they move. The potential linear momentum they transport can
be oriented in moving direction, opposed to the moving direction or orthogonal to the
moving direction. They are not photons. Photons will be defined as complex subatomic

particles that move with light speed.

2.12.2 Complex subatomic particles that move with light speed.

Complex subatomic particles that move with light Speed (photons) are generated when
negative basic subatomic particles (electrons) of an atom change to a lower energy
level. The energy difference is stored in the transversal rotational momentum J,, of
basic subatomic particles that move with light speed. A complex subatomic particle
that moves with light speed consists of at least two basic subatomic particles that move
with light speed, separated by a distance of % in propagation direction. The two basic
subatomic particles differ in their potential transversal linear momentums p;-, that are
opposed.

The longitudinal linear momentum pc” is responsible for the particle character, while
the opposed transversal linear momentums at the distance % define the wave character
of the complex subatomic particle that move with light speed (photon).

The concept is shown on Fig. 22.

2.13 Polarization of basic subatomic particles.

We have seen that the basic subatomic particles emit fundamental particles in all
directions and are regenerated by fundamental particles of the opposed type from all
directions.

To calculate the total energy or the total linear momentum we have to ingrate over
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the angle ¢ from 0 to 7, and over the angle v from 0 to 2 m as shown in Fig. 17.
The integration over the angle ~ is not necessary with non polarized basic subatomic
particles because of the rotational symmetry of these particles.

The polarized basic subatomic particles have an axial symmetry and the integrations
over the angle ¢ or the angle v are limited to part of the whole intervals, because over
the remaining intervals the integrations are zero.

The following polarizations (spins) are possible:

1. Longitudinal polarization, when the integration over the angle v can be limited

to part of the whole interval.

2. Transversal polarization, when the integration over the angle ¢ can be limited to

part of the whole interval.

3. Longitudinal and transversal polarization, when both integrations can be limited

to part of the whole intervals.

4. Complex polarization, when the relation between v and ¢ is given by a complex

function.

2.14 Determination of the probability function W for basic

subatomic particles.

The emitted fundamental particles expand with constant velocity in the space around
the nucleus of the basic subatomic particle.

The density is therefore invers proportional to the square distance to the nucleus
of the basic subatomic particle.

The density of the emitted beam of fundamental particles is because of the radial
symmetry given by

T'o
Pe = T_g (96)

Fundamental particles of the opposed type are equally distributed in the neutral
space and the probability to meet them is

w, =1 (97)

The probability that fundamental particles of the emitted beam meet with funda-

mental particles of the opposed type in the neutral space in the volume
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dV =dr. r.dp r.sine dy (98)
and regenerate the basic subatomic particle is

"o

W = W, W, with We = — dre (99)

For a basic subatomic particle that moves with constant speed v in a neutral space
the probability W that the emitted fundamental particles meet with fundamental par-
ticles of the opposed type is W = 1. This results from the consideration that the
energy of the emitting basic subatomic particle at z = 0 and the energy of the basic

subatomic particle that is regenerated at the distance x = vt is the same.

The integration of the probability along the emitted beam is given by

o0 Oo/r,o
W:/T w:/r T—gdrezl (100)

A basic subatomic particle that moves with the velocity v is regenerated at t = 0
by its emitted fundamental particles from ¢ = —oo to ¢ = 0. The probability that
fundamental particles meet in the defined volume dV is expressed as a time function
by

d(ve t,) (101)

with

v t, = r, Radius of the nucleus of the BSP
ve ty = 1. Length of the emitted ray

Ve dty = dr,

Note: t, = t. for all BSP.

The concept is shown in Fig. 23;
See also Fig. 18.

We define that inside the radius r, of the nucleus of the BSP there are no emitted
fundamental particles and that the probability to meet them there is zero. The time

integration along the emitted beam is

B —to (Ue to) ., B
W= /OO o et =1 (102)

If we introduce the probability function in the equation for the energy
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t'=t+At

X — —00

Figure 23: Space diagram showing the regeneration of a particle at vt = 0

we get

. . !
due to emissions at vt and vt

2

The linear momentum is given by

[{1 w2 20| [0 |, |
2
iE mc* ¢ | v Uy /OO To g 4
= — | = x —/— = dr,
oz zolfal @l S, 2T
C2
dp =~ dE
c

(103)

(104)

(105)

2.15 Specific energy of a basic subatomic particle that moves

with constant v.

We start with the expression
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dE = F dk (106)
with

c
20

T dry
2 dr, dp —
2 47 (’027r

r

Us Uy

X
CARNNUA

dr — (107)

For accelerating and decelerating BSPs we have for v < ¢ that ¢ ~ ¢ and r, ~ r,.
For differences between accelerating and decelerating BSPs see Fig. 13 and Fig. 15.
We also have that

v

Vg R Vg and sina & — sinp (108)
c
We get
1 r, . dry
dr =~ 572 dr, sinp dp 3 (109)
With
dry =1, dp h=r, sinp dV =dr, dry h dy (110)
we get for the specific energy
dFE E r,
W:E 7“_7'4 fOT’ v <L ¢ (111)

The energy density varies only with the distance r,. There is no influence on the

energy density distribution due to the speed v.

2.16 Definition of the magnitudes dH, and dH,.

We start with the expressions

E=E, + E, dE = dE, + dE, (112)
with
dE, = B, — | == x | wdy dE, = E, dk (113)
2v | | |0,
and
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dE,=F, — | — X w dp dE, = F, dk
v | 0] ||
with
de= = | 2« Ul wdy dE = E dx
20 | |ve |0,

We define the magnitudes

dH, = H, dr and dH, = H,, dx

with
E? E?
H>=F, = —2> d H:=FE, ——"?
: JE+e " JE? + B2

We define also the variable H so that
H?=H} + H? with H?>=FE
For the longitudinal components at a point in the space we get
dE = H* dk = v J. dH = H dk

dE, = H? dx = v J, dH, = H, dk

and for the transversal component we get

dE, = H: dr = v J, dH, = H, dk
Note:
[dH | =v J.dk = dE dk # dE [dH, > = v J, dx = dE, dr # dF,
[dH, > =v J, dx = dE, dk # dE, dH # dH, + dH,

For a particle moving with v < ¢ we have

Bl
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(115)

(116)

(117)

(118)

(119)

(120)

(121)

(122)

(123)
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and

p
H =H = = = H 12
dH, n dK \/mdn P \/m/odn (125)

with fU the spacial integral. From the last expression we see that dH,, is a measure

of the linear momentum p of a particle.

If two fundamental particles from two BSPs cross, their longitudinal rotational
momentums generate, according to postulate 6, the following transversal rotational

momentum.

jn(;) = sign(J,) sign(Je,) (\/Je, €1 X /s, 32) (126)
If we multiply both sides of the equation with \/m and \/m and take the

absolute value we get

dE;;) = ‘ VVer Jey iy €1 X \/ Vs, Ty, disa 5 (127)
or
dEffz) = | dH,, &1 X dH,, 5 | with dH,, 3; = \/vs, Js, dr; 5; (128)

If at the same time two other fundamental particles from the same two BSPs gen-
erate a transversal rotational momentum —J_T(LZ), so that the pair complies with the

symmetry requirements for generation of linear momentum, we get for the linear mo-

/ dHel e; X / dH52 So

1 2

mentum on the two BSPs

1 S : S
dp=—dE;  with  dE]) = (129)

If two fundamental particles from two BSPs cross, their transversal rotational mo-

mentums generate, according to postulate 7, the following rotational momentum.

jz(”) = sign(J,) sign(Je,) (V/Juy i1 X /Iy T2) (130)

If we multiply both sides of the equation with /v, dk; and /v, dks and take

the absolute value we get

dEfn) = | dH,, ny x dH,, 7y | with AHn; i = \/Vn; Jn; dRi 7 (131)
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If at the same time two other fundamental particles from the same two BSPs cross,
and their transversal rotational momentum generate a rotational momentum —j;(”),
so, that the pair complies with the symmetry requirements for generation of linear

momentum, we get for the linear momentum on the two BSPs

/ dHn1 Ny X / dHn2 N9

1 2

1 n N n
dp=—dE  with  dE = (132)

2.16.1 Relations between fields from standard physics and the dH fields.

The energy densities for the electric and the magnetic fields from standard physics are:

1 1 9 1 1 9
we—§ED—260E wm—QHB—z,uoH (133)
Note: Bold letters are used for the fields from standard physics.

For the fields of the present theory, the corresponding energy densities are:

_dE, _dE,
Ay Ty

with dV =1r? dr sin dp (211 (134)
T

Ws

With

dHs, = \/dE; dk and dH, = +\/dE, dk (135)

we get with w, = ws and w,, = w,

1 1
st:\/éﬁa dV drk E and dHn:\/Q,uo dV drk H (136)

Note: The fields from standard physics generate the forces on charged particles
directly while the dH fields from the present approach require pairs of opposed dH

components to generate forces (see sec. 2.10).

3 Linear momentum generated out of opposed an-

gular momenta.

3.1 Total linear momentum out of dF,.

Fig. 24 shows how the linear momentum dp is calculated out of the opposed angular
momenta J, and —.J, for a single moving subatomic particle (SP). For the single

particle it is dp = 0 what means that p = muv is constant in time.

44



Linear momentum out of opposed anqular momenta

counterclockweise
T dEn = v |jn|
cyclone n
rotation
dE, =——§J -dl
2R
linear
—_— dp
1
= dp=—dE,
=L C
rotation
anticyclon
clockweise

Figure 24: Generation of linear momentum out of opposed angular momenta

Two SPs interact trough the cross or scalar products of the angular momenta of

their FPs. For SP “1” and SP “2” we can write in a general form:

Je= \/ dJl er X v/ dJ2 €9 (137)

with dJ; = J; dk; and é; the unit vector.
We now multiply the equation with the frequency v to get the energy.

dE e = \Va% Jl dlil e1 X v JQ dlig €9 (138)

With dE; = v J; = E; dk; and E; = E;(v) and dk = dk(r,, 7, ,7) we get

dE e = \ E1 d:‘il €1 X v/ E2 d/‘iz €9 (139)
and with dH; = V E; dk; we get
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dE e = dHl e X dH2 €y = dHl X dﬁg (140)

We define that

dEI;é: \/ E1 / dlil €1 X 1/ E2 / dlig €9 :/ CZHl X / JHQ (141)

o o

and that

1 / - 1 dp
dE, = —— @ dE_e¢-dl dp = —dE dlF' = — 142
P orR p© p c 7 dt (142)
Note: For the Coulomb interaction €¢; = 5;. For the Ampere interaction é; = n;
and for the inductive interaction e; = n; and é; = 59 and the cross product has to be

changed to the scalar product.

3.2 Elementary linear momentum out of dFj.

The energy stored in the transversal angular momentum J,, of a BSP moving with v

and which corresponds to a volume dV was defined as

dE, = E, dk, = J, v (143)

The concept is shawn in Fig.24

We now define N as the number of FPs with the elementary energy Erp = hi,,
where v, is a universal constant frequency, contained in the volume dV with energy
dE,. See sec. 9.2.1 for the definition of Erp = hv,,.

dE,  E, dk,
Erp Erp

The linear momentum of a SP defines a relative movement to a static BSA and is

Nn = with EFP =h V, (144)

given by

U .
dpl, = = dH, -dH,, ~ with  dH; = H; dk; (145)
C

where dH,, is the transversal field of the moving BSP and d]:ISP is the longitudinal
field of the static porbe BSP. With

dHl = \/E d/fi =\ dEl dlfi =\ Nz EFP d/ii (146)

The product dk,, dks, that results from equation (145) gives the probability that
F Ps of the two BSPs meet in the volume dV. As to each FP from N,, corresponds one
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Focus = c

dE, = hv

Figure 25: Generation of elementary linear momentum
out of opposed elementary angular momenta h

FP of N, results that N,, = Ny, = N and that the probability dk, dks, = 1. We get
that

1
dpiny = - N Erp (147)

If we define the elementary linear momentum dpy, as (see Fig. 25)

1 h
dpn = — Epp = — 1, (148)
c c

and consider that N,, = Ny, = N we get for the total linear momentum

dpiy = N dpy (149)
For
E2
dE, = E, dk = —2— dk (150)
\/EETEIQ,
and B << E? and v << ¢ we get
dE, m ¢ dk m cdk
N = = v=Kov with K= = constant 151
Erp Erp Erp (151)
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From eq. (149) we get
(n) _ (n) _ (n) _
dp;,;=muvds  p,o=muv ¢ di  p,5=muv (152)
14

3.3 De Broglie and the Focal Point approach.

The present Focal Point approach defines the wave length of a SP as follows:

h
A=t with E,=m¢c E,=pc (153)

We define the following wavelength:

hc hc
Ao = o and Ap = 5, (154)
If we replace them in the first equation we get
1 A2 )2
PYALEDY © b
For the de Broglie wavelength A = A, we get
A,
N = \p = ——te (156)
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Part II Static Interactions

Deduction of the Coulomb, Ampere and Lorentz laws. Quarks are defined as swarms

of electrons and positrons.

4 Laws that describe the interactions at static basic

subatomic particles.

In this section the linear momentum at two static BSPs that are separated by the
distance d is deduced and the quantized momentum time At and the potential energy
are calculated.

The general form of the Coulomb-law is deduced and the range is shown where it
coincides with the classic Coulomb-law.

The induction between two static BSPs is derived and the energy-, angular and
linear momenta balance presented.

The energy of the transversal angular momenta of FPs of a straight infinite conduc-
tor, and the current flow for a constant mass-current I, are calculated. Subsequently,
the linear momentum on two parallel straight conductors at the distance d and the
general form of the Ampere-law are derived. The range is shown where the general
Ampere-law coincides with the classic Ampere-law.

After calculation of the quantized momentum time At for two straight conductors
and comparing it with the quantized momentum time At for two static BSPs, the
coincidence in the range d > r, is shown, where r, is the radius of a BSP.

The force (Lorentz) on a BSP that moves with constant speed through a field of
oriented transversal angular momenta and the force on a complex SP through the same
field is explained.

Finally a classification of particles and fields is presented.

4.1 Linear momentum at two basic subatomic particles.

At an isolated basic subatomic particle with v = 0 the angle a between emitted and
regenerating fundamental particles is &« = 7 and no transversal rotational momentum
J, is generated. If there are two static basic subatomic particles at a distance d, the
emitted fundamental particles of one BSP will cross with the regenerating fundamental
particles of the other BSP and their longitudinal rotational momentums will generate
opposed transversal rotational momentums according to postulate 6. Because of the
symmetry shown on Fig. 26, the opposed transversal rotational momentums J, are

generated at different but symmetric rays. These transversal rotational momentums
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have different magnitudes along a ray of regenerating fundamental particles because
of the changing angle 3 along the ray, but all have the same rotational sense. The

concept is shown on Fig. 26.

BSP providing
regenerating FPs j +

+)
o

BSP providing

regenerating FPs

Figure 26: Generation of rotational momentums at regenerating fundamental particles
of two static basic subatomic particles at the distance d

The generated opposed transversal rotational momentums J_r(é) at the regenerating
rays of BSP 2 comply with the requirements for generation of linear momentum at BSP
2. The direction of the linear momentum coincides with the connection line between

the two basic subatomic particles.

According postulate 6 it is

T = sign(J.,) sign(J.,) ( T er x /7, §2> (157)

The sign of the linear momentum is given with
sign(dpy) = — sign(J,$)) (158)
To calculate the energy dE;(,S) that allows to calculate the linear momentum dp, we
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start with the energy equation for longitudinal rotational momentum Js of a BSP that

moves with the velocity v.

dEy = —2——= — | — X —| w. dyp (159)
/E? + E2 2v | o] |0y |
with
W, = 7"_; dr, and E,=m¢c (160)
r@
For v = 0 we have that v, = v, and that
I simae 1. (161)
lim —— = - sin
We obtain
1 .
dE, = B, 5 We sing dp = E, dk (162)
For v = 0 we also have, that
Te =T, dr. = dr, o =1 dp = di (163)
and we can write dFE, as follows
1 .
dE, = F, 5 Wr siny dy = E, dk (164)
Now we write the expression for the variable dH,
1r, . .
dH, = H, ; Z dr, siny dp with  H,=/E, (165)
TT‘

Through the area dA at the distance r, defined by the differential angles diy and
d of the torus with vertex at the BSP

dA =1, sint r, dy dy (166)

flows at each moment all the fundamental particles that the regenerating ray has

stored from 7, to r, = co.

/ dH, with v and diy = constant (167)
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The same is valid for the fundamental particles stored by the emitting ray and we

can write

/ dH, with dH, = H dk = \/ E, dr (168)

If we have two basic subatomic particles whose stored fundamental particles meet

at the distances r,,, and r,,, we get for the energy contribution responsible for the linear

/ dHel S1 X / dH32 So

1 2

momentum at BSP 2

dE') =

p

(169)

and the linear momentum is given by

Jl (e = 00 00
dpg SR = g% M/ Hel dlir1 / H52 dl*{,r2 SR (170)
C R 27TR - ro

Note: The dimensionless equalization factor a = 8.7743 - 1072 is introduced at this

point to make in sec. 9.1 the product E, A,t exactly equal the Planck constant h.

The magnitudes dH,, and dH,, must refer to the same volume dV in which they
meet and in which they generate the transversal rotational momentum. In this special
case of symmetry the requirement is fulfilled, because of the coincidence of the two

toruses of the BSPs, by the following relation between the two areas.

dr?’l Tr dqu)l = dT’T2 Try d¢2 (171)

The concept is shown in Fig. 27.
The contribution to the linear momentum of the BSP 2 due to the ring-shaped

volume dV is

1 S
dp> = — dE}” (172)

We obtain the total linear momentum for the BSP 2 by integrating over the whole
space. For the integration over di; and diy we must consider the minimum and
maximum integration limits defined by the radii of the two BSPs and the distance d.

The limits are given by

Brmin, = arcsin% Umaw =T — Ypin. > /72 + 12 (173)

Vmaz = T — Vuin d<\/r2+r? (174)

Wimin = arccos
o
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Figure 27: Geometric relations for the calculation of the linear momentum
between two static basic subatomic particles at a distance d

Vimax V2maz
P2 = / / dps (175)
1 2

min min

The concept is shown in Fig. 28 for the angle ¢ of the emitted ray.

(P max

Figure 28: Integration limits for the calculation of the linear momentum
between two static basic subatomic particles at the distance d

The force is measured by reversing the distance Ad produced by the linear momen-
tum p, in the time At, applying an external force on the BSP. We can therefore write
that dﬁ? = Po.

dFy = — — = —-—= (176)

To obtain the total resulting force F' we have to integrate along all the regenerating
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rays of BSP 2.

F, = / dF, (177)

At large distances beyond the maximum linear momentum of Fig. 29, where the
force is given by the Coulomb law, the quantized momentum time At is calculated by

the ratio between the momentum p, and the Coulomb force between two charges.

D2 . I Q1@
At == th F =
a we 4me, d2

(178)

At short distances before the maximum linear momentum of Fig. 29, we define the
quantized momentum time At as equal to the quantized momentum time At beyond

the maximum linear momentum which has the same momentum p».

We note that the probability w is a function of the radius of the BSP and, therefore

also the momentum p, and the time At are functions of the radius.

For complex particles that consist of more than one BSP, the force is given by

a

o AL ‘/ dHel S1 X/ dH52 So

2

dFQ = —(AnlATLg)

(180)

with An; = n; —n; the difference between the number of positive and negative
BSPs that form the complex particle .

For the proton we have n™ = 919 and n~ = 918 with a binding Energy of Ep,,, =
—6.9489 - 107 J = —0.43371 MeV. For the neutron we have n™ = 919 and n~ = 919

with a binding Energy of Eg, . = 5.59743 - 107! J = 0.34936 MeV.

We define the field generated by the complex particle 1 as

/ dHel 51 X / dH52 So

1 2

dFQ a
dFp = “2 = —
E ATLQ " c At

(181)

with dFp the force generated by the complex SP An; on a BSP at point 2.

4.1.1 Calculations

The results are the same for accelerating and decelerating BSPs.
me = 9.1093897 - 10731 kg
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ge = 1.60217733-107 A s

€, = 8.85418781762 - 1012 “/4—;
Ve =cC

v, = 10%° o

ro = 1071 m

a=8.7743 - 1072

Note: Because of the axis symmetry of the Coulomb configuration it is possible to
describe the problem without the space variable . The general form of the distribution

function dk is

dry
2T

L7, :
dk = 3 :—2 dr, siny dy (182)

T
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Fig. 29 shows the calculation for the linear momentum p.
For d = 0 we have p = 0. The linear momentum grows up to his maximum at d = 2 r,

and then decreases proportional to d 2.

x10'23
1.4

o
fe') —_
T T

momentum [ Ns ]

o
[}
T

0.2

0 |
- 16 . - 15
2.0 x10 distance [ m ] 1.6 x 10

Figure 29: Linear momentum p between two static basic subatomic particles
with radius r, = 1.0 - 107 16m
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Fig. 30 shows the calculation for the time At.

For d = 2 r, the time has a minimum an grows then up for d — oo to the same value
it has for d = 0.

3.6

At[s]

0.9 ‘ ‘
20 x10 16

_15
distance [ m ] 16 x10

Figure 30: Quantized momentum time At between two static basic subatomic particles

with radius r, = 1.0 - 10~ 1%m
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Fig. 31 shows the calculation for the force F'.
For d = 0 the force is F' = 0. The force grows up to his maximum at d = 2 r, and then

decreases proportional to d—2.

10280

8995

7710

6425

5140

force [N ]

3855

2570

1285

1.6 x10°1°

distance [ m ]

Figure 31: Force F' between two static basic subatomic particles
with radius r, = 1.0 - 10~ m
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Fig. 32 shows the calculation for the potential energy W.

For d =0

the potential energy is W = 0. The potential energy then grows for d — oo

t0 Wpoy = 1.6- 10712

1.54

1.32

work [ Nm ]

o
o))
)

0.44

0.22

© 20x10° 1.6 x10°1°

distance [ m ]

Figure 32: Potential energy between two static basic subatomic particles

with radius r, = 1.0 - 107 1%m
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Summary of calculations.

The time At is the same for d = 0 and for d — oo.

At(d = 0) = At(d — o0) (183)

The time At is a function of the radii r,, and r,,.

At =K ry, 1o, with K =5.42713-10* 25 — constant for d >r, (184)

m2
That the force disappears for d = 0 means that in the nucleus of an atom the BSPs
don’t attract nor repel each other.
The energy necessary to separate two BSPs with the proposed radii r, and with

opposed signs from d = 0 to d = oo is

W = 1.6-10712 J ~ 1.0GeV. 185
p

Note: The ionization potential required to separate an orbital electron from its
atom is approx. 5.0 eV. The energy of W, ~ 1.0GeV shows the difficulty to separate
one electron from a neutron, which is composed of equal number of electrons and
positrons.

Conclusions.

e As the Coulomb law is only an approximation of the force between two BSPs for
distances d > r, we conclude, that the time At is constant for all distances from
d =0 to d — oo as long as the radii remain constant. This conclusion is based
on the result that the time At is the same for d = 0 and d — oo (see Fig. 30).

e The new expression for the Coulomb law is proportional to the mass of the elec-
tron or positron. The charge of the electron is used to calculate the quantized
momentum time At. The conservation law of charge is replaced by the conser-
vation law of positive n™ and negative n~ BSPs that form a complex SP. As the

n are integer numbers, the Coulomb force is quantized.

e As the linear momentum is caused by a pair of regenerating fundamental par-

ticles with opposed rotational momentums in the time At, the frequency the

L

fundamental particles arrive to the nucleus of the BSP is <.
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4.1.2 Complex particles.

Complex particles are formed by basic subatomic particles with distances between them
oscillating around zero. All electrons and positrons that form a stable atomic nucleus
are in the region left to the maximum of the curve of Fig. 29, where the attracting
or repulsing force grows with the distance. Because of the dynamic polarization of an
atomic nucleus produced by the electrons and positrons of the nucleus, all electrons or
positrons that leave the nucleus are immediately attracted and remain in the nucleus.

Positive BSPs don’t mix with negative BSPs at d = 0 because their emitted and
regenerating fundamental particles have different rotational momentums and velocities.
They can be separated by applying the necessary energy to overcome the maximum
linear momentum between them.

We have defined An; = n;" — n; as the difference between the number of positive
and negative BSPs that form the complex particle 7. As examples we have for the
proton n* =919 and n~ = 918 with a binding Energy of Ep, , = —6.9489 - 10714 J =
—0.43371 MeV, and for the neutron n™ = 919 and n~ = 919 with a binding Energy
of Ep, ... = 559743107 J = 0.34936 MecV .

4.2 The Coulomb-law for two BSPs.

For the static force between two basic subatomic particles with v = 0 and therefor

1 = o we get from the previous section

a o0 B o0 B
P /J = / 5 / s (186)
with
> 1 o1 . :
/ dH., = 3 Vmy ¢ Tor sin 1 dyy |51 X So| =sin (187)
Trq Try
and
& 1 Toy .
dH,, = 5 VMo ¢ —=2 sin g dpo (188)
Ty TT2

2
If we put the last two expressions in the first equation and concentrate on a dFy we

get, because of the symmetry

T\l ¢y Ty TR i B gy dipy (189)

dF, =
2T 4 At Ty Ty

or
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dFQZKF

si si
SR OMP2 nBdpy dpy  Kp=
Try Try 4

aAt My /Mg €1y, To, (190)

With the following geometric conditions

R =r,, sing R =1y sin g —7Tp COSPL+ Ty, COSPa =d (191)
we get

sin ¢ sin s

ry Trg = d2 : . 192
Tra Tra [ sin ¢ cos g — sinyy cos g |2 (192)
As

sin 1 €os g — sin g cos 1 = sin(g; — pz) = sin (193)
we obtain for the total force F3

K ¢177Law S0277LU“'L' .
Fy, = d—g / / |sin® (1 — 2)| dpo dipy (194)
Plmin P2min

With At = K r,, 7o, and 7,, = 7,, and m; = my and a = 8.7743 - 1072 we get

_ e o [t _ a0t ]
Kp = 7= m ¢ =1.104516 - 10 { . ] with K =5.4274-10" || (195)
Omin = arcsin%’ Omaz = T — Cmin d>\/r2+7r2 (196)
d
Opmin = arccos . Omaz = T — Crmin d<\/r2+r? (197)

Eq.(194) is the Coulomb-law expressed in the present approach. We see the

inverse proportionality to d 2. The double integral becomes zero for d — 0 because the
R
For d > r, the double integral becomes a constant because the integration limits tend

integration limits approximate each other taking the values vy = 5 and Ypee =

t0 Ymin = 0 and Qe = T.
The classic Coulomb-law for the electron is
1 Ge * 4e » 1

= =K, — 1
Y dme, d? e (198)

with
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2

’ q

KF: ¢
T €o

If we make F, = F; we get for the double integral the value ffCoulomb = 2.0887

which is valid for d > r,. The Coulomb equation transforms to

=2.307078 - 10~ [N m?] (199)

ac \/ \/ 32 ml m2
Fy =2 = 2.78029601 - 1 2
» = 2.088768 1K 72 78029601 - 10 g7 (200)

The charge of the electron is replaced by the mass of the electron.
For complex particles that are formed by more than one BSP and with d > r, we

have

Anl : A?”Lg
d?

The charge @ is replaced by the expression An = n™ —n~ which gives the difference

F, =2.307078 - 10~ % (201)

between the constituent numbers of positive and negative BSPs that form the complex
SP. As the n; are integer numbers, the Coulomb force is quantified.

As examples we have for the proton nt = 919 and n~ = 918 with a binding Energy
of Ep,,, = —6.9489- 107" J = —0.43371 MeV, and for the neutron n* = 919 and
n~ = 919 with a binding Energy of Ep, ., = 5.59743 - 10711 J = 0.34936 MeV .

In the case of an atomic nucleus An = n*t — n~ is equal to the order number Z of

the element.

The following Fig.33 shows a schematic representation of the generation of the

Coulomb force.

We now express the Coulomb force as a function of the power stored in the longi-

tudinal angular momentum of the two BSPs. We start with eq. (194) that we write

_amcr // _GCTE\/E\/E// (202)
F 4 At d? Coutomb 4 d 2 VAL VAT Coulomb

as

or

E,
and with P, = A =FE, v, (203)

Coulomb

P, An1—2AnQ / / (204)
d Coulomb
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Static BSP 1 Static BSP 2

v v

Vector pro duct between square roots of

emitted longitudinal angular momentum

of BSP 1 and regenerating longitudinal

angular momentum of BSP 2

v

Symmetric transversal angular

momentums on regenerating
fundamental particles of BSP 2

v

Linear momentum on BSP 2

responsible for the Coulomb force

Figure 33: Generation of linear momentum between two static BSP

4.3 Convention for the representation of positron and elec-
tron.

Fig. 34 shows the convention used for the electron and positron. The positron emits

FPs with high speed v, = oo and positive longitudinal angular momentum J_* (co+)

and is regenerated by FPs with low speed v, = ¢ and negative longitudinal angular

momentum J,~ (c—). The electron emits FPs with low speed v, = ¢ and negative

longitudinal angular momentum J,~ (¢—) and is regenerated by FPs with high speed

v, = oo and positive longitudinal angular momentum J,* (co+). (see sec. 2.1 postulate

3)
v, =c¢ V, = v, =0 .V, =cC
o @)
)

()
Positron Electron

Figure 34: Convention for electron and positron
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4.4 Power flow between charged complex SPs.

The energy E, exchanged between two BSPs is given by

Ep = / a / dHel S1 X / dH52 So

1 2
or

with  a=8.7743-107%  (205)

&

B, = 682333107 22 J (206)

and the power P

Ep . 2
P1:At=cF1=cF2=P2 with At = K7, (207)
resulting
E, 1

P, = 6.82333-10°2 =2 — 208
) NE /s (208)

The energy E, = P; Ayt is exchanged with the frequency

=1.2373-10% 5! (209)

Vy =

At
The concept is shown at Fig.35

Power flow between two charged CSPs

Figure 35: Power flow between charged complex SPs
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Note: According eq.(206) the exchange energy E, = pc = E, gives the distance
d = 8.26032 - 10~* m, distance that is smaller than 27, = 7.71806 - 10~ m where the

curve of Fig.29 has its maximum of pye, = 1.3-107% Ns and E, . = 3.9-107% J.
For all distances d the exchanged energy F, < £, ~21 E, . .
In the case of charged complex SPs the power exchanged is
Ly
PlenlAngAt:CF1:CF2:P2 (210)

For a given distance d, each BSP of the complex SP 71" emits Ansy times the power
of two isolated BSPs at the same distance d, and each BSP of the complex SP ”2”
emits An; times the power of two isolated BSPs at the same distance d. The power
interchange is quantized in power units of two isolated BSPs at the same distance d.

Fig. 36 shows a proton with one level electron. The level electron emits FPs with
light speed, what explains the light speed of photons when the level electron changes
to a lower energy level.

0 +

v

o+ .-~ . Level electron
0 + c— __,-‘ ;‘:) c—

+-
- Il r 4
Foely -—
S S NS
Al S
Proton )
sl . o+
N

Figure 36: Proton with level electron

4.5 Invariance of the Coulomb force.

Two BSPs that move parallel with the speed v at a distance d between them, are

exposed to the following Coulomb force.

/ dHel S1 X / dHSQ S9

1 2

a

i, =
2 c At

(211)

where we have for the emitting particle 1

dH., = H dk.,  where  H?*=E=,/E? + E? (212)

and for the regenerating particle 2
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E2
dH,, = H; drks, where H:=F = —2%— (213)

We now analyze the force for v < ¢ and for relativistic speed.

a) For v < ¢ we have that

H=+E, and H,=+\/E, (214)

If we introduce these expressions in (211) we get

_ My CQ o] o]
dFQ =a o A /7, d/ﬂ)el 51 X /r d/ﬁ)sz So (215)
Tl T2
b) For relativistic speed with E? < E? we have that
E,
H~.\/E, and H, ~ (216)
vV Ep
If we introduce these expressions in (211) we get
_ My 02 o] ~ o] ~
dFy =a Az . dke, 51 X . dks, So (217)

As dk is independent of the speed v and proportional to the particle’s radius like
At, we get the same force for the whole range 0 < v < ¢ of speed. The Coulomb force

is invariant for inertial reference systems.

Note: The Lorentz invariance of the charge in today’s theory is equivalent to the
invariance of the difference between the constituent numbers of BSPs with positive

J& and negative J&) that integrate the complex SP.

4.6 Induced force on a static BSP.

The force between two static basic subatomic particles is basically, if we ignore the

proportionality factor a,

F, = / dF,  with dF, = ——

s 218
P e At (218)

/ dHesx/ dH,, 5,

P

where fU is the spacial integral around the test particle.
The force on the static test BSP dH,, has its origin at the pairs of symmetric
and opposed transversal angular momentums generated by the longitudinal angular

momentum of the fundamental particles of the two static particles, when they cross.
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Pairs of symmetric and opposed transversal angular momentums are also generated
by a BSP that moves with the speed v.

We now imagine an BSP that is accelerated in the time At by the transversal
angular momentums .J,, of its regenerating fundamental particles from v =0tov =k ¢
with £ < 1, and then returned by an external force to its original position with v = 0
in the time At — oo.

We then have

/ dH,, = / dH,(v="Fkc) — / dH,(v=10) = A/ dH, (219)

because

/ dH,(v="Fkc) = / dH,, and / dH,(v=0)=0 (220)

We now introduce (219), that gives us pairs of symmetrical opposed transversal
angular momentums in eq.(218) in considering, that the vector dH,, is constant and
tangential along a torus with an axis that goes through the two BSPs. The resulting
force is the induced force on the probe BSP by the moving BSP and we call it dF;.

=t ot A [ )

Now we generalize the expression to dynamic processes where the vector dH,

changes in time and in space and get

1
F:— H, H 299
dFi 27TR {dt/ d /dSP} (222)

This expression of the force as a function of a closed path integral of a timely
changing variable is called induced force and is the basis for the description of all

dynamic processes that will be analyzed in the section 7 for dynamic laws.

Note: It has still to be determined if an equalization factor is required for the

equation of the induced linear momentum to match with experimental data.

4.7 Field divergence of a static complex SP.

We start with the expression of the field for a complex SP that is defined as

(223)




Through calculations in sec. 4.1.1 we arrived to the following results for d > r,:

1. The inverse proportionality of the two vectors [ dH., and [ dH, to their respec-
tive 7,, and 7,, results in an inverse proportionality to the distance d? for the

force F5.
2. The proportionality At = Kr,, r,,, with K = 5.42713 - 10 4.

According to eq. (200) the field Fy can be written with Any = 1 and m; = ms as

F, = 2.5326 - 102 An - % (224)

Now we define the divergence of the field F§ as

divF, = lim $ I dA
V—=0

(225)

With A the area of a sphere with centrum in An -m and V' its volume we get

divF, = 4w - 2.5326 - 10° An % = 3.1826 - 10° An p, (226)

where p,, is the masse density of a positive or negative basic subatomic particle.

4.8 Balance of energy, rotational momentum and linear mo-

mentum between two static BSPs.
4.8.1 Balance of energy.

The energy v.J,, stored in an emitted fundamental particle of BSP 1 with v = 0 is
passed to a regenerating fundamental particle of the same BSP 1 when they meet, so
that

vle, = vy, (227)
The concept is shown in Fig. 37.
The energy vJs, is then split in longitudinal and transversal components when it
meets with regenerating fundamental particles of the other BSP (2) so that
vy =vJ® + vJ® (228)

The energy emitted by the BSP (1) is returned to the same BSP (1) and we can

write
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Strahl 1

Strahl 2 -
\‘>J@2

Strahl 2 L J Strahl 1

Figure 37: Rotational momentum balance between two static basic subatomic particles

vl =vJS + v (229)

The same process is valid for the other BSP (2).

The energy balance can also be explained through an energy interchange between
the two static BSPs in, that the energy vJ,, stored in an emitted fundamental particle
of BSP 1 with v = 0 is splitted and passed to a regenerating fundamental particle of
BSP 2 when they meet, so that

vl = vt + vy (230)

Because of symmetry, there is an emitted FP of BSP 2 that meets a regenerating

FP of BSP 1 with the same angle § that carries the same energy.

4.8.2 Balance of rotational momentum.

The concept is shown in Fig. 37.

On the drawing we see that on ray 2 all the longitudinal rotational momentums
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are opposed to ray 1. The same applies for the rays 1" and 2.
The transversal rotational momentums have opposed rotational momentums on the

rays 1 and 2 and the rays 1" and 2.

/

I ==J5) I =T (231)
ARSI L7 (R S (232)
g, =—J, (233)

Opposed rotational momentums are constantly generated on one place, and at the
same time, equal opposed rotational momentums are destroyed on an other place, so

that the sum of all rotational momentums is always zero.

4.8.3 Balance of linear momentum.

As already exposed, the linear momentum is a characteristic of BSPs, generated by
rotational momentums of fundamental particles that comply with defined symmetry
conditions. The concept is shown in Fig. 38.

Because of symmetry we have for two BSPs

dpr = 2 / dH,, slx/ dH,, 5, | = 2 / stmx/ dH,, Sl‘zdpz
¢ Try Try Try Try
(234)
For complex SPs that are formed by more than one BSP we have
A A o0 oo
dp, = a 2L 212 / dH,, 5 x / dH,, 5 (235)
¢ Try Try
A A o0 oo
dpg =a M / dHSQ So X / dH81 S1 (236)
c Trg Try
resulting that

with An; = n;” — n; the difference between the number of positive and negative

7

BSPs that form the complex particle 7.

71



Figure 38: Balance of linear momentums between two
static basic subatomic particles

4.9 Energy of transversal rotational momentums J, at a torus
with an axis that coincides with a current of BSPs with

speed v.

We start with the energy equation for transversal rotational momentums J,, of a BSPs

that moves with v.

E? U
dE, = ———2 | Y o Ul do (238)
/Eg + E2 2v | |ve |0,
with
To mu
We = 2 dre and  E,=c —— (239)
T2
For decelerating BSPs we have
Uy = 00 and t, — 0 (240)
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Te =Tr dre:drr 90:1/} dSOZdw

and for dF, we can write

E? U U
dB, = —— | Do Dl e gy
1/Eg + E]% 20 | |v ||| 72
with
US:\/U§+U2—21J6U cos
For v << ¢ we get
1r, ) d
dEn:mUQd/@:mvg—r—dm smwdw—fy
2 r2 2m

The cumulate energy is

o 1r, . d
/ dEn:mUQ—T—smwdwl
r 2r 2w

T

The concept is shown in Fig. 39.

Figure 39: Geometric relations of a torus for a straight
conductor with a current of basic subatomic particles I,
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From Fig 39 we have that

dl
Ty dip = dly, dl = sin dly, — siny dip = - (246)
We get for the cumulated energy
/OOdE om0 gy = dE (247)
. n An 7’% n(cum)

For p, the linear density of BSPs in the conductor, where p, = N, /Az with N, the
number of BSPs in Az, we get the cumulated energy for N, BSPs

o 1 r

_ 2 o
/TT dE, = p; Az mwv Er—zdldy (248)
To get the cumulated energy for all BSPs of a stright conductor with infinite lenght

we write
/OO/TT dEn:pmmUQErodldv/ooym X =12 =h*42? (249)
resulting
IO e 517

dE, = p, mv 17 dl dy = dE(cum,o0) (250)

if we multiply and divide the expression with A, what leaves the expression un-
changed, we see that the equation represents the cumulated energy for the area dA =
h dl dy.

Note a)

Transversal rotational momenta .J,, from regenerating fundamental particles of pos-
itive or negative BSPs, that move in the same direction in the conductor, have the same
rotation sense. It is not possible to know from the rotation sense of the transversal
rotational momenta .J,, if the BSPs that move in the same direction have a positive or
negative sign.

If we change the direction of the current of positive or negative BSPs in the con-
ductor, the rotation sense of the transversal rotational momenta .J, changes.

Only the rotation sense of the longitudinal rotational momenta J, shows, if the
BSPs that move in the same direction, have a positive or negative sign.

Note b)

The relation between the masse current [,,, and the electric current I. is defined by

the following equations:
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[C
I.=N, qv=1,60217733-10"* N, v —} (251)
S

[k
In =N, mv=9,1003897 - 107! N, v —g] (252)
s
with ¢ the elementary charge in Coulomb and m the rest masse of the electron in
kilogram.
We get that
k
In =" I, =5,685631378 - 10712 I, {—9} (253)
q s

4.10 Current flow of BSPs at an infinite straight conductor.

4.10.1 Current flow through a closed loop enclosing an infinite straight

conductor.

We start with eq. (250) switching to the cumulated dH,, field

oo (o, ¢] _ 1 Y
/ / dH, = py [m v?]"* 5 % dl dvy 7 (254)

With the mass current I,,, = p, m v and with constant Al and Ay we get

R B L, 1r _
dH, = —= - 2 Al Ay i = dH,(cum.co 255
L = 3 = 29

We now build the close loop integral

2
fdf_[n(cumm) ~dly = dHp(cum,oc) N /0 dry dly =hdyn (256)

We get

— 1
den(cum,m) : dl'y =Ky I, Ky = \/% 5 ro Al A’Y = constant (257)
If we compare with the mainstream expression

we conclude that
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dH p(cum,00) = He and I, =1, (259)

4.10.2 Current flow through a closed loop outside an infinite straight con-

ductor.

To obtain the current flow outside an infinite straight conductor we place the closed
path integral outside the conductor.

The concept is shown in Fig. 40.

Figure 40: Geometric relations for the calculation of the closed path integral outside
a straight conductor with a current of basic subatomic particles I,

We start with equation (255) which is

m 1r To _ I

that we can write as

dH (cum,o0) = K="2"r,Al Ay (261)

Jm 4

As dI:In(cumm) o« dH, we use the nomenclature from Fig. 40 in what follows

K _ I, 1
—n
h

dH,, = dH,smut  h*=h2+ R>—2h, R cose ,uza—g (262)
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with

cot = ] (263)

For the closed path integral we get

_ _ K
7§ A, -ds=0  with  dA,(H) = 0 (264)
For an other relation between dH,, and h we have
— _ . - K _
dent -ds #0 with dH,(h) # o (265)

The finding that only with a relation of the type dH, (h) = % the external closed

path integral is zero is important for the analysis of the laws that describe processes

that are variable in time.

4.11 Linear momentum density on two infinite straight par-

allel conductors that have mass currents /,,; and I,,.

We start with eq. (250) from sec. 4.9 wich represents the cumulated energy for the
area dS = dl h dr.

o0 o0 1 Y
/ / dE, = p, m v 1 % dl dy = dEy(cum,00) (266)

Now we switch to the cumulated field of d /Hn(cum,oo) defining Hn/ as

, di'?
H, = [m v? E} (267)
and get
e i :
/ / d'H, = p, {m V2 ﬂ TZ dy = d' Hyp(eum o) (268)

We now rearrange the equation to get an expression for the current I, = p, m v

and get

/ I, dl
H - _m ]2 2
d n(cum,o0) 4\/ﬁ h To d7 ( 69)

We now take two parallel conductors at the distance d with mass currents I,,;
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and I,,o that have transversal rotational momentum J,,, and .J,, at the distances hy
respective hy. Because of the existing symmetry the rotational momenta .J; that are
generated according to postulate 7 form pairs that comply with the requirements for

linear momentum.

Jo =+ sign(J.,) sign(Jo,) (V/ Ty it X /Ty, 1) (270)

with n; and ns unit vectors that are orthogonal respectively to the area formed by
I,,1 and hy, and the area formed by I,,,5 und hs.
The concept is shown in Fig. 41

Figure 41: Angle § between the transversal angular momentum of regenerating
fundamental particles of two straight conductors with currents I,,,,

The energy dFE,, associated with J; is

o] oo [e%¢) [e%¢)

’ _ / _

/ / d Hm ny X / / d an na
T=—00 J Ty T=—00 v Try

and the linear momentum

dE,, = (271)
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1
dp, = — dE
Ph c Dh
We get with my = mg =m and r,, = 1,, =17, and dly = dly = dl

JE. — Loy I, 7‘ dryy dyo
Ph 16 m /Ay hy

|n1 X ﬁ2| dl

with

11 X 7iy| = sin f§ = sin(y1 — 72)

With the following geometric conditions already defined in sec. 4.2

R = h; siny R = hy sinqy, — hy cosy; + hy cosyy =d
we get
e B — 2 sin7y; sin-ys
r [siny; cosvyy — sinyy cosy |2
As
siny; cos7yy — sinvyy cosy; = sin(y; — 7o) = sin 3
we obtain

Ly L, _(2, sin?(y1 — 72)
16 m d+/sinvy; siny,

The differential force density is given by

dE,, = dy, dys dl

dF dph 1
_— = = E
Al Aldt cdl At By,

and we get

dF 1 Iy I, 12 sin’(y — )

> 0 dy, d
Al cAt 16 md /siny; siny, e

The total force density we obtain by integrating over the whole space

F 1 /,ng [m Im V2mazx Tmaz Sln z-)/
Kl == 1 2 / ( 1 ) d’y d’)/Q
c At 16 m v, VS sy,

mln

(272)

(273)

(274)

(275)

(276)

(277)

(278)

(279)

(280)

(281)

In eq. (281) we can see the inverse proportionality to the distance d between the

parallel conductors.

The integration limits are similar to the integration limits for two static BSPs shown
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in Fig. 28.

The numerical integration of eq. (281) gives a curve similar to the curve of Fig. 29
with the difference, that for d > r, the curve decreases with 1/d instead of 1/d?.

The double integral gives for d > r,

V2mazx TMmaz
/ sinf(n —92) ) oy dry = / / — 5.8731 (282)
Mmin VY sin "N sin "2 Ampere

2min

Finally we get

F 58731 12 Iy I,

o

Al cAt 16m d

where b is a tuning factor we introduce who’s function is explained later.

(283)

The reference force density we calculate with the mainstream equation of the theory

of electricity and magnetism

(284)

with I, the current in Ampere.
The relation between the mass current [,,, and the electric current I, is given by

:

S

In =" I =5,685631378 - 10712 I, { (285)

q

with m the electron mass in kilogram and ¢ the elementary charge in Coulomb.

If we make the two total force densities equal for d > r,

F F.

Al Al

we get for b = 0.25 the same K = 5.4274 - 10* s/m? we got for two static BSPs.
The advantage to make K = 5.4274 - 10* s/m? we see in sec. 9.1 resulting

for d>r, (286)

471 m
K

The Ampere law for the mass currents takes the form

=h with 'h' the Planck Constant (287)

F I, I 5.8731 1r? m
R K m1 +ma th K — b o —6.1 .1 15 0 2
AT Ty we ASVTR T OI8T06 10T e (288)

The energy density flow from mass-current I,,,, to I,,, is equal to the energy density

flow from mass-current I,,, to I,,,
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Eph,l _ F1 & _ F2 C _ Eph,2
Al Al Al Al

(289)

Note: There is an important difference when switching from the cumulated energy

equation to the dH field to arrive to the Coulomb or the Ampere equations.

e To arrive to the Coulomb law we simply passed from

/dE:E/ ds  to /dH:\/E/ dr (290)

to build the cross product and obtain the inverse d ? law from the Coulomb law.

e To arrive to the Ampere law we had to pass from

/dE:E/ dk  to /d’H:\/E/ dr’ (291)

< 1 Jry . dy
/Td/f—ﬁﬁ/?smgodgp% (292)

to build the cross product and obtain the inverse d law from the Ampere law.

with

Force density as a function of the power.
Now we express the force density as a function of the powers stored in the regener-
ating transversal angular momentum of the BSPs of the two conductors.

We start with eq. (281) that we write with I,,, = p, m v

E: 1 12 py, MU Pry, Mo v // (203)
Al cAt 16 m d Ampere

E _ 1 Toy Pxy Toy Py m U% m U% // (294)
Al 16 mc d Alt AQt Ampere

At =K ry 1o, = \/K 2 \/K 72, = /At /Aot (295)

and with E,, = m v? we get

or

where

F B 1 Toy Pzy Tos Pas //
Al 16 mec d \/Enl Vny \/Enz Vnsy (296)

Ampere

where v,,, = 1/A;t. Finally we get with P, = E,, v,
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F 1 Toy Px1 Tos Pao //
— = /P, /P, 297
Al 16mec d ! ? (297)

Ampere

The dimensionless factor r, p, = N, 7,/Ax gives the density of the BSPs with

radius r, at the conductor.

Sign convention between currents and angular momenta.

We have seen that the transversal angular momentum J, is oriented according the
right screw rule in the direction of the velocity vector v of the BSPs and is independent
of the charge of the BSPs. It is not possible to know the charge of the moving BSPs
based on the direction the transversal angular momentum .J,, has. The direction of the
transversal angular momentum J, gives the direction of the linear momentum dp.

The equation of postulate 7 gives the opposed transversal angular momentum .J,
generated by the BSPs of the current [,,,, and the BSPs of current I,,, which generate

the linear momentum dps on the BSPs of current 1,,,,.

Jo = sign(J.,) sign(Je,) (\/ T, 11 X /I, N2) (298)

The sign of the linear momentum dps is given by

sign(dpy) = sign(J,) (299)

The concept is shown in Fig. 42. See also Fig. 41
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o Jector tip
X Vector end

Figure 42: Sign convention for the calculation of the linear momentum dp
for two straight conductors with currents I,,,

4.11.1 Invariance of the Ampere force between two parallel conductors.

In Fig. 43 we have parallel negative BSPs moving at a distance d with the speeds
vy and vy producing the currents [, and I, relative to a coordinate system that
is fix with the positive BSPs that regenerate the negative moving BSPs. At point
P the transversal angular momentum of the regenerating FPs will interact according
postulate 7 and generate the opposed forces dF} and dF;, . After the integration of all
regenerating positive BSPs of the whole space we get the forces F| and F; .

If we now assume that v; = vo = v and that the coordinate system is fix with the
moving negative BSPs we have the case of Fig. 44 where the positive BSPs are moving
at a distance d producing the currents I}, and I} relative to a coordinate system
that is fix with the negative BSPs that regenerate the positive moving BSPs. At point
P the transversal angular momentum of the regenerating FPs will interact according
postulate 7 and generate the opposed forces dF;" and dF; . After the integration of all
regenerating negative BSPs of the whole space we get the forces F}™ and F,". Due to
the symmetry the forces F|” and F, are equal to F}™ and F," provided that v; = vy = v.

Note: The selection of a coordinate system implies the definition of the environ-

ment that provides the regenerating BSPs.
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Fig. 43 and Fig. 44 show the conservation of the Ampere force for inertial coordi-

nate systems.

Regenerating enviroment +

+

Figure 44: Movin positive BSPs and negative regenerating BSPs
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4.11.2 Energy and rotational momentum balance for two parallel conduc-

tors.

Because of the constant velocities of the BSPs at the two conductors and the existing
symmetry, the balances of energy and rotational momentums are reduced to the two

following already analyzed cases:

e One BSP with constant speed at sec. 2.11

e T'wo static BSPs at sec. 4.8

The rotational momentums ji(n) are generated as opposed pairs so that the total

sum of all rotational momentums is zero.

4.11.3 Calculations

The calculations were made assuming two infinite parallel conductors with currents of
decelerating BSPs. To calculate the momentum time we consider that dp, = p, and

the momentum time

At ="1n (300)
was calculated with

me = 9.1093897 - 107! kg
ge = 1.60217733 - 107 A s
fro="4m-1077 =

Ve = C

v, =103 2

ro =101 m

For the radius r, the same value as for the calculations for two static BSPs was

used.
Results.

The results show that for a given radius r, and for d > r, the momentum time At
is the same and constant for two static BSPs and for two infinite straight conductors.
The curve of At has the same shape as for two static BSPs inducing the conclusion,
that here also the time At is a constant for all distances d, even for d < r, (see Fig.
30).
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The following Fig. 45 shows a schematic representation of the generation of the
linear momentum between two conductors and between a moving BSP and an oriented

transversal field.

‘ Current of BSP 1 ‘ Current of BSP 2 | |Static ring of BSP

v v v

Vector pro duct between Vector pro duct between
square roots of emitted square roots of emitted
longitudinal and regenera- longitudinal and regenera-
ting longitudinal angular ting longitudinal angular
momentums momentums
U U

Symmetric transversal Symmetric transversal

angular momentum angular momentum

on regenerating on regenerating

fundamentl particles fundament! particles

v v

Vector pro duct between square roots of transversal

angular momentums of regenerating fundamental
particles of BSP 1 and BSP 2

U

Symmetric transversal angular momentums on

regenerating fundamental particles of each BSP

v

Linear momentum responsible for

the Ampere and Lorentz forces

Figure 45: Generation of the linear momentum between two conductors and between
a moving BSP and an oriented transversal field
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4.12 Momentum on a BSP that moves with v; in a space with

oriented transversal rotational momentums.

4.12.1 General considerations

If a BSP moves with the speed v, in a space with fundamental particles that all have
transversal rotational momentums .J,, oriented in the same direction, then the TRMs

Jn, of the regenerating fundamental particles of the BSP and the oriented TRMs of

the space will generate rotational momentums according to postulate 7.

J; = — sign(Jy,) sign(Js,) (/g e X /T, Tin) (301)

J,, represents the TRMs of the moving BSP.
Jn, represents the oriented TRMs in the space.

Js, und J,, are the corresponding longitudinal RMs that define the sign and will

be omitted in the following analysis.

The concept is shown in Fig. 46, where the current that generates the field .J,, and
the corresponding regenerating longitudinal field J,,, are not shown. It is important
to note, that the direction of the resulting force on the moving BSP is also defined by
the sign of the field J,, not shown in the figure, and not only by the direction of the
field .J,,,. The field J,, shown in Fig. 46 can be generated by a current of positive or
negative BSPs moving in the direction of v,.

If we decompose the vector nj, in a component ﬁ}y parallel to the velocity v; and a

component 7i;- orthogonal to v; we get

Jo =Ty 1y X [Ty () + mib) (302)

The components +/.J,, ﬁ}l‘ parallel to v; generate components of the rotational mo-
mentum J; that don’t comply with the requirements for generation of linear momentum
dp, namely, that they form pairs of opposed rotational momentums.

The components \/J_nh ny orthogonal to v; on the contrary generate components
of the rotational momentums .J; that comply with the requirements for generation of
linear momentum dp. The direction of the momentum dp is orthogonal to v; and 7;-.
The so generated momentum is responsible for a lateral displacement of the BSP during

the regeneration.

Ji- = oy By X /Ty, Wi (303)

J- represents the opposed rotational momentum that comply with the requirements
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Figure 46: Generation of a pair of opposed J;- on a basic subatomic particle
that moves with v, in a field of oriented Jrfh

for generation of linear momentum pg radially to to the resulting circular movement.

If we multiply both sides of the equation with /v, dk,, and \/v,, dk,, and build
then the sum of dH,, and dH,, of the regenerating fundamental particles, we get for

the energy dE,, responsible for the radial impulse

/ dH,, iy x / dH,, 7

t h

dE,, = (304)

with

dH,, = \/Vn, Jn; dEn, (305)

dH,, can have its origin at a current through a straight conductor that is parallel

to the y axis in the xy plane at the distance A from the moving BSP.
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The total linear momentum in radial direction we get by the spatial integration of
dE,,.

C C

1 1
pp=——E, -1 / dE,, (306)
1%

The BSP has constant tangential v; and radial vy velocities.

E E
v = 2 and — vgp=—2% (307)
mc mc
The force on a BSP is
dpr  pr 1 1 11 /
ETat A e AtTPRT At f, TR (308)
or
11 > _ > _1
FL = E Kt y dHnt ny X dth ny (309)
T'rt T'rh

The differential dpg is equal to the momentum pr because the momentum is con-
stantly reduced to zero.

For complex particles composed of more than one BSP the force is

PR
Fp =An — 310
L n N ( )

with An = n™ — n~ where n™ are the number of positive and n~ the number of
negative BSPs that compose the complex SP. As n™ and n~ are integer numbers the
force is quantified.

The known Lorentz force is

F,=Qu, xB (311)

with F, the Lorentz force, () the electric charge and B the magnetic flux density.

The general expression for the linear momentum due to the transversal fields of two

moving BSPs is

1 dl - (ny x ng) [ > B
dp sR:Eji{ #/ﬁ H,, dk,, /T2 H,, d/-@m} SR (312)

The concept is shown in Fig. 47

89



Figure 47: Linear momentum due the transversal fields of two moving BSPs

4.12.2 Lorentz law.

We start with eq. (255) from sec. 4.10.1 which gives the dH,, field at the distance h
and the interval dl generated by a stright infinite current I,,,.

In 11,
/ / A == % dl dy 7o = dH y(eum.o0) (313)

and with eq. (281) from sec. 4.11 which gives us the force density between two

stright infinite currents 1,,, and I,,,.

F b 2 I I 5
— = o -7 14
Al cAt 16 m //Iélwme (314)

with b the tuning factor introduced in eq. (283).
The dH, field at dl generated by I,,, is with eq. (313)

dH p(cum,o0) = dl dyn (315)

The concept is shown in Fig. 48
For hy = 0 we have that hy = d and dl overlaps with I,,,, and the dH,, field generated

by I,,, at dl is perpendicular to I,,,. It is

4d
mip — Hn cum,00 1
VSl dy o) (316)
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Figure 48: Geometric configuration for parallel currents

The current I,,, can be expressed as a function of the velocity v; of its BSPs as
In, = px m vy where p, = N/Ax. If we now concentrate on one BSP of I,,, we have
that N = 1 and Az = r, resulting [,,, = m v;/r,. We now introduce I,,, and I,,, in
eq. (314) and get

b 1
F=—1 dH,, — 317
c At e 4 dﬁ)/ / /Ampere ( )

Note: For simplicity reasons we used the notation dH, instead of dH,(cum,o0)-

The equation has two variables dy and dH,, that are free and if fixing one we fix

the other. We decide to make
e /]
=1 318
4 dry Ampere ( )

In Fig. 46 we have defined the angular momentum jnLh as the component per-
pendicular to the speed v;. It is J,fh = Jy, sin p, with p the angle between v, and
T,

For the case of two parallel currents the dH, field from eq. (317) is perpendicular
to the current I,,, and we express it now in a more evident form as dH,, = dHnlh. It is
dH,. = dH,, sinj, with ;i the angle between 7, and dH,, .

The relation between the angular momenta J,,, and the dH,, fields is

dH,, = \/Jn, v dH, =\/J+ v (319)

We get

b
c At

The force F' is perpendicular to the speed v; and the dﬁrfh field and describes the

F= S o dH (o< nt) =~ o, x dff, (320)
C

Lorentz force
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F.=quov, x H.=q v, H. sinpn (321)

We make F' = F, for 4 = 7/2 and get

b , 1 I,
E\/ﬁvthn:quothc with HC:%E

The following equations for the conversion from mainstream to the present approach

(322)

result

q po ¢ At
dH, = ————
bvm

From sec. 2.16.1 we have that

1
dH, =1/ 5 Ho dV dx H (324)

where H is the magnetic field strength from standard theory.
If we make H. = H we get that

_quocAt 1 I,

H = ——— — 323
bym 27 d (823)

¢ 1, @ A2t

AV dr =2 T

=6.66-107°¢ m? (325)

4.13 Momentum on a BSP that moves with light speed through

a space with oriented transversal rotational momentums.

When a BSP moves with light speed through a space with fundamental particles with

oriented transversal rotational momentums .J,, as shown in Fig. 46, in the equation

Ji = — sign(J,,) sign(Jo,) (v/ T, e X /T, 1) (326)

the sign of the missing LRM .J;, is not defined.

The direction of the pairs of opposed TRMs .J; that comply with the requirements
for linear momentum is not defined and therefore also the direction of the linear mo-
mentum generated is undefined.

Note: Each angular momentum .J; from a FP, of BSP, has its opposed —.J; on
an other F P, of BSP,, they are entangled. If the angular momentum of F'P; interacts
with an angular momentum of a F'P, of BS P;, then necessarily the angular momentum
of FP; must interact with the angular momentum of another FP, of BSP, so that

opposed angular momentum are generated.
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4.14 Momentum on complex particles that move with the
speed v in a space with oriented transversal rotational

momentums.

Complex particles are formed by more than one BSP that are forced in opposed di-
rections orthogonal to the moving direction, according to their signs, when they move
through a space with oriented TRMs. Thus a polarization of the positive and negative

BSPs inside the complex particle occur. There are two basic cases:

e If the complex particle has the same number of positive and negative BSPs (neu-
tron) the sum of momentum orthogonal to the moving direction compensate and

the complex particle maintain its straight direction.

e If the complex particle has different numbers of positive and negative BSPs (pro-
ton) the sum of momentum orthogonal to the moving direction does not com-

pensate and the complex particle deviate from its straight direction.

4.15 At as a function of the radius r, of the BSP.

In the equations for the momentum responsible for the force between two static BSPs
and the force on a BSP that moves in a field of oriented transversal rotational momen-
tums, the radius r, of the BSPs appears. The momentum time At as a function of the

radius r, is given by

At=Kr? with K =542713 10 [i} (327)

m2
From the calculations for two static BSPs and for two straight parallel conductors

we have that

At = 5.4274 - 107 sec for  r,=10"1° and 0<d<oo (328)

Note: Calculations and plots originally were made for an energy distribution (see
sec. 2.3)

c Vg Uy
2v

CARCA

dr = W sin ¢ dg (329)

and changed to

W dy (330)




which allows to express the Coulomb force as an rotor of the dH, field (see sec.
4.6). This explains, why there is a difference of approx. a factor 2 between the values

of the plots of sec. 4.1 and values calculated with the new energy distribution.
We now analyze the two following expressions for the calculation of the force

1. Force between two static BSPs.

a s ) 5) oo B (o] B
AF = —— dB  with  dE]) = ‘ / dH., 5 x / dH, 55 | (331)
and
2 75 77” o
dH, = H,dx  with  dr= -S| = x | oq,  (332)
TU | |0 |0, | 72

We see that dE}(,S) is proportional to r2. With At = K r? also proportional to
r2, the equation for the force dF is independent of the radius 7, of the BSPs.
As complex particles like protons, atomic nucleus, etc. are formed by the sum of

BSPs, the attraction force between them is also independent of their radii.

2. Force between two straight parallel currents of BSPs.

1
dF = — dE 333
c At Ph ( )
with
a5, — \ [ [ [T [ (334)
T=—00 J 1y T=—00 v Try
and
) . .
dH, = H,dx  with di= — | == x | Z2qy  (335)
v | | |0, | 72

We see that the same considerations as for the two static BSPs are valid with the
same result, that the force dF' is independent of the radii r, of the BSPs.

These results are conform with the two basic equations of classic physics for the
force between two static BSPs and the force density between two parallel straight

conductors of BSPs, that are also independent of their radii.
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— 1 Ql QQ and E:&Icl ]CQ
4me, d? [ 27 d

If we now observe the following derived equations for the Coulomb-force

(336)

sin @y sin g sin®(p1 — @2) diy dipy

F 4 Cca Anlﬁ Ang\/m /‘leaz /‘PZmaz
5 =
¥ ®

CmK d? . -
(337)
and the force density between two parallel straight conductors of BSPs
F 1 [m [m V2mazx Mmax in2 _
i 1 2 / Sln. (’yl 72) d/Yl dIYQ (338)
Al 64dmcK d yoJy o /SINY sy

and compare them with the basic equations of classic physics we see, that the

permittivity €, and the permeability u, are replaced by the constant K.

4.16 Considerations on the quantized momentum time At.

The momentum time At during which reactions between two BSPs occur is

At = K 1y, o, (339)

The displacement Ad of a BSP in the time At due to the presence of an other BSP
occurs with the speed k ¢ with k # ¢, and takes place each time a pair of regenerating
fundamental particles that comply with the requirements for linear momentum arrive
at the nucleus of the BSP.

The displacement is given by

Ad=kcAt=kcKr? for Toy = Toy (340)

The linear momentum 1is

p=FAt=F K r? (341)

If one of the particles is a complex particle with n* positive and n~ negative BSPs,

the momentum is

p=(nT—-n)FAt=nT-n")FKr? (342)

with F' the force between the two particles at the distance d.
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4.17 Momentum between BSPs that move with light speed.

At BSPs that move with light speed the longitudinal rotational momentum .J, = 0 and
J;, = 0 and therefore dH, = 0 and dH, = 0.

The direction of the vector products of the transversal rotational momentums .J,, of
two BSPs that move with light speed, according postulate 7, are not defined because

the longitudinal rotational momentums .J, = 0

T =+ (VIp it X /Ty Ti2) (343)

We get that

1
dE™ = | dHn, ) X dHpy iz | and — dp =~ dE™ (344)
C

As photons are composed of a sequence of BSPs that move with light speed, the
interaction of photons is a result of the interactions of the individual components.

BSPs with light speed have fundamental particles with only transversal rotational
momentums that comply with the requirements for linear momentum. As the difference
between negative and positive BSPs is given by the rotation sense of their longitudinal
rotational momentums, which are zero for BSPs with light speed, BSPs with light
speed have no charge.

BSPs with light speed are formed of pairs of fundamental particles with opposed
transversal rotational momentums. They don’t disintegrate by emitting fundamental
particles in all directions and therefore don’t need to be regenerated. The pairs of
fundamental particles with opposed transversal rotational momentums are placed in
planes orthogonal to the moving direction or in planes containing the moving direction.
If placed in the orthogonal plane, the potential linear momentum is in the direction
or opposed to the moving direction and, if placed in the plane containing the moving
direction the potential linear momentum is transversal to the moving direction.

The closed path integral along the transversal rotational momentum is
7{ di-J, with Y J,=0 (345)

4.18 Classification overview of stable particles and fields.

Stable particles that emit fundamental particles have to be regenerated to not disinte-
grate. They require an environment that is capable to regenerate them, an environment
where fundamental particles of the other velocity than the emitted one exist in suffi-
cient quantity. As they are regenerated, they have longitudinal rotational momentums

on their regenerating fundamental particles, and therefor, a positive or negative charge
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according to the sign of the longitudinal rotational momentums. Complex particles
without charge are formed by equal number of positive and negative charged particles.

Stable particles that don’t emit fundamental particles don’t require to be regener-
ated. As they don’t emit fundamental particles they don’t disintegrate and can move
through space without fundamental particles to regenerate them. As they are not re-
generated, they have no regenerating fundamental particles with longitudinal rotational

momentums and have therefor no charge.

There are two fundamental particles (sec.2.1) defined by their speeds (see Fig. 3).

e Fundamental particle with light speed c.

e Fundamental particle with infinity speed oc.

The fundamental particles are subdivided according the angular momentums they

have in:

e velocity equal ¢ and negative longitudinal angular momentum.
e velocity equal ¢ and positive longitudinal angular momentum.
e velocity equal oo and negative longitudinal angular momentum.

e velocity equal co and positive longitudinal angular momentum.

The basic subatomic particles are classified in v # ¢ and v = c.

Basic subatomic particles with v # ¢ are:

e accelerating electron
e decelerating electron
e accelerating positron

e decelerating positron

Basic subatomic particles with v = ¢ (see Fig. 59 and Fig. 69) are Neutrinos which

can have the following configurations:

e pair of opposed transversal angular momentum with positive linear momentum
e pair of opposed transversal angular momentum with negative linear momentum

e pair of opposed transversal angular momentum with transversal linear momentum
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e pair of opposed longitudinal angular momentum with transversal linear momen-

tum
Stable complex subatomic particles are:

e neutron (composed of electrons and positrons and binding energy)
e proton (composed of electrons and positrons and binding energy)
e nuclei of atoms

e photon (composed of neutrinos)
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A classification of stable particles and fields is shown in Fig. 49.

Fundamental particles defined by their speeds
and by their longitudinal and transversal
angular momentum.

Basic Subatomlc Complex subatomlc Field
particles particles

v<c v<c / \
charged, no charge charged/ no charge longitudinal traqsversal
nowave  no wave n Ont g }vlf;geed’ wave oriented oriented
character character charare character

eg. eg. eg. eg. e.g .8
electron  const. of photon roton hoton > 1

positron neutrino ;feutron P electric magnetic

Figure 49: Classification of stable particles and fields

There are three interaction laws between fundamental particles of different BSPs,

namely,

e Vector product between longitudinal angular momentums of fundamental parti-
cles (Postulate 6).

e Vector product between transversal angular momentums of fundamental particles
(Postulate 7).

e Transfer of angular momentum between two fundamental particles (Postulate 8).
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5 Quarks composed of electrons and positrons.

The existence of Quarks were first infered from the study of hadron spectroscopy.
Infered means that they were reconstructed from the final measured products obtained
after collisions of particles. The final products are neutrons, protons, pions, muons,
electrons, positrons, photons, and neutrinos. As neutrons, protons, pions and muons
are composed of electrons and positrons according the F&R model, the real final
products are electrons, positrons, photons and neutrinos. And as also according to the
E& R model the photon is a sequence of neutrinos, the final products are reduced to

electrons, positrons and neutrinos.

Nucleus
a)
I'=N,+N,
b) Nucleus
I'=N,+N;+N_

Baryon (3 Quarks)

T=Ze++Ze_

Figure 50: Nucleus composed of quarks.

The concept is shown in Fig: 50
To explain the interpretation given with the model E&R UFT we calculate an
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example with the proton.

Example: The proton has a mass of 938.2723 MeV/c?. With the mass of an
electron or positron of 0.511 MeV/c?* we get &~ 1837.00 electrons and positrons from
which n* = 919 are positrons and n~ = 918 electrons. The mass of the proton m, is

equal 1837 times the mass of an electron plus the binding energy.

1837 Me + Mpinding = Myp (346)

The total number of electrons and positrons at the proton are

T =Njs+Ng+Ne=n"+n" = 1837 (347)

where N; is the total namber of electrons and positrons at Quark <.
As the proton is a baryon it has three quarks with the electric charge uud. With
the SM we get the charge of the proton adding the fractional charges

2

2
u+u—d:—+§— =1 (348)

1
3 3
Charges that are a fraction of the charge of an electron or positron violate the
charge conservation principle.
The finding of the “E& R"” model that electrons and positrons neither attract nor
repell each other when the distance between them tend to zero, allows to interprete
the charge numbers Q of quarks as the relative charge

N;

Nt —

where N;" and N, are the number of positrons and electrons at the quark i and
N; = N;"+ N; and AN, = N;" — N;".
As the sum of the differences between electrons and positrons at each quark must
give the charge of the proton we write
uNA+uNB+dNC:;NA+§NB—%NC:1 (350)
With equations (347) and (350) and the condition that the result must give positive
integer numbers of Ny, Ng and N, we can fix arbitrarily one of them and calculate the
others. As there are many possibilities, we conclude that the distribution of electrons
and positrons on the three quarks of baryons is not constant and may vary from case
to case. For mesons the distribution is well defined because they have only two quarks.

If we fix for the moment arbitrarily N4 = 499 we get
Ny =499  Np=11433 Ny = 1223.66 (351)
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We should get integer numbers, but this is irrelevant for the moment to understand

the new interpretation and continue with the obtained results and get

2 2 1
ANj= 3Ny =33266  ANp= Np=T622  ANp = 3N = —407.886
(352)

or

ANy + ANp + ANg = 332.66 + 76.22 — 407.886 = 0.994 (353)

The rest masses of the quarks are, with m, the mass of the electron
ma = Naom,=454558-107* kg mp = Ngm, = 1.03847-10"* kg (354)

me = Ne me = 1.11498 - 10727 kg (355)

Note: The rest masses m, and mp which belong to the same type u of quarks of

the proton are not equal.

As chemical elements are composed of protons and neutrons, the atomic number Z

of an element can be expressed as the sum of the AN of its quark constituents.

Z =Y AN, (356)

Note: All hadrons have a total charge equal —1, 0 or 1 while chemical elements
have charges Z > 1. Quarks play a similar function at hadrons as protons and neutrons
play at chemical elements.

Now we come back to the fractional numbers of N and AN. If we round the

fractional numbers slightly to get integer numbers as follows

Ni=499 Np=114 No=1224  to get T =1837 (357)

ANy =333 ANp=T6 ANc=-408 toget Y AN=1 (358

we get for the relative charge of the quarks

ANy 2 ANp 2
= = 10,6673 ~ - = = 0.6666 ~ -
Ua ‘ . ) 3 Up ’ Ng 3
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= 0.33333 =

% (359)

according eq.348.

More examples:
For the 7+ particle we have that nt = 137 and n~ = 136 and that it is an ud

particle.

T=Njs+Ng=n"+n" =273 (360)
- 2 1
—d=-4+-=1 361
With the equations
2 1
gNA—gNle and Ny + N =273 (362)
we get
Ny =92 ANy =u Ny = 61.333 (363)
Np =181 ANp =d N = —60.333 (364)
AN4+ ANp =61.333 —60.333 =1 (365)

The rest masses of the quarks are

ma = Ny m,=283806-10"" kg  mp= Npm,=1.6488-10"%® kg (366)

For the neutron we have that n™ = 919 and n~ = 919 and that it is a udd particle.
We get

T =Njs+Ng+Ne=n"+n" = 1838 (367)

11
g _d==_1_2 —0 368
u 373 (368)
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For the X1 particle we have that n™ = 1164 and n~ = 1163 and that it is an uus

particle.

T=Njy+ Np+ Nec=n"+n" =2327 (369)
2 2 1

—Z24Z2_-_ 370

U+ u + s 3—|—3 3 ( )

The distribution of electrons and positrons on the different quarks must not be
necessarilly static.

Conclusion: The @ values for the electric charge at quarks refere to the relative
charge of the quarks. There is no need to introduce fractional charges which were never
directly measured. All charges are integer multiples of the charge of an electron, which
constitutes the unit of the charge.

Note: No strong forces or gluons are necessary to hold quarks together, because
for the distance tending to zero electrons and positrons neither attract nor repel each
other. The distribution of electrons and positrons on the quarks is not a constant. The
number N; of the u quarks of one hadron may be different because u gives only the
relative charge of a quark.

Note: The p and 7 leptons may also be composed of electrons, positrons and

neutrinos.

6 Spin of level electrons and the formation of ele-

ments

In sec. 2.1 two types of electrons and positrons were identified according the velocities
of their regenerating and emitting fundamental particles; they were named accelerating
and decelerating BSPs.

We know, that electrons in individual energy orbits must have different states which
the SM explains with two states of angular and magnetic momenta (spins). In the
present approach the two states are explained with the two types of electrons, namely
accelerating and decelerating electrons.

For each type of level electron, a corresponding opposed type of positron must
exist in the atomic nucleus, to allow that the emitted fundamental particles of one can
regenerate the other. This leads to the conclusion, that protons and neutrons are also

composed of BSPs of different types.

Neutron: Composed of 919 electrons and 919 positrons. The 919 electrons are com-

posed of 459 accelerating, 459 decelerating and 1 acc/dec electrons. The 919
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positrons are composed of 459 accelerating, 459 decelerating and 1 dec/acc positrons.

Proton: Composed of 918 electrons and 919 positrons. The 918 electrons are com-
posed of 459 accelerating and 459 decelerating electrons. The 919 positrons are

composed of 459 accelerating, 459 decelerating and 1 acc/dec positrons.

The concept is shown in Fig. 51.

Neutron
n"=n =919

Proton
n" =919 n =918

Figure 51: Neutron and proton

The definition of two types of electrons and positrons has let to protons that are

formed of BSPs that complement each other and which are of two types:

e Protons formed of accelerating positrons and decelerating electrons and

e Protons formed of decelerating positrons and accelerating electrons

The level electron associated to a proton is of the same type as the electrons of the
proton. Elements in the Periodic Table are classified according to the growing number
of protons in their nuclei and with level electrons that alternate their spin. In the
present approach the elements of the periodic table are built with alternating types of
protons and the two types of electrons with opposed spin from our standard theory are
replaced by the accelerating and decelerating electrons.

The formation of elements is shown in Fig. 52.

105



Atoms

acc
dec” —level
electron

Hydrogen Atom

b)

dec’ | acc™ — proton

acc” —level
electron

" dec” —level

acc’ |/ dec” — proton
electron

Helium Atom

Figure 52: Level electrons of Hydrogen and Helium Atoms

106



Part III Dynamic Interactions

Induction between subatomic particles and deduction of the Maxwell equations.

7 Laws that describe dynamic interactions between
BSPs.

In this section the forces induced on static BSPs, caused by longitudinal and transversal
angular momenta of BSPs that move with constant speed, are derived.

The possibility to explain static laws through dynamic laws is presented.

The generation of gravitation forces is deduced and a proposal for gravitational
momenta between galaxies and black holes is made.

The force field of an oscillating dipole is derived and the irradiated energy is de-
composed in its longitudinal and transversal components.

A relation between the radius of the oscillating BSP and its energy is deduced.

The 1.Maxwell equations for the static and the far induced fields are derived.

The 2.Maxwell equation is derived and the equivalence between the vector dH,, and
the magnetic Hertz field vector [ is shown.

The divergence of static and induced fields are presented.

The Lorenz invariance of the deduced Maxwell-equations is presented.

7.1 Field at a point P of the space due to a BSP that moves

with an instant speed v.

The time variation of the longitudinal and transversal rotational momentums fields
dH, and dH, at a point P, produced by a BSP that moves with an instant speed @ at
the = coordinate, is now analyzed.

Starting with

dH, = H, dk § and dH, = H,, dx (371)

and
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we get for the time differentiation of the longitudinal field

i dHS:—%[HS]/ d/{sr—Hi/ drk §, + HS/ dr dp (374)

dt J, “dt ), ar
with
i =21 g singd d /Ood—”"' d (375)
I{—Qr? r, sinpdp  an : =g singdy
resulting
d [ d [~ d [~ d [~
@l dk = E/ﬁ drk(r,) + E/n dr(p) + E/ﬁ dr(r,) (376)

With the last term of eq. 376 we have anticipated the results of sec.7.5.4 that show

that the radius r, of a BSP is a function its energy that can vary with time.

hec
To = E (377)
with
E=\/E2+E2 for BSP with v #c (378)
and

E = hw for BSP with v=c (379)

The variations in the directions r, and ¢ are defined by the unit vectors 5, and 5.
For sign conventions see Fig. 53.

The vectors 5, = — 5, 5, and 5; = i are orthogonal unit vectors.

It is important to note that for the time differentiation of the transversal field, the
vector froo dH, is normal to the surface formed by v and 7,, and doesn’t change its
direction with the variations of r, and ¢ because of dy = — v dt. This means, that the
variations in time of froo dr in the direction 5, add algebraic.

d [ d

_ oo B d oo B
pr 8 dana[Hn] /TT d/{s,y—i-Hn%/” dk 5, (380)

The concept is shown in Fig. 53.

108



/

dr nde 5 -5
dy=—v-dt / _
SY =n
P
\\ :
do dH.,

VY <

Figure 53: Geometric relations to calculate the time variation of x

7.1.1 Deduction of %f:f dr at a point P for a BSP that moves with the

speed v.
It is

17
dk = = —
8 2 72

T

) 1 .
— dr, sinp dp and / dk = 3 To sin o dp
T T

(381)

The time differentiation presents three terms depending if the differentiation is

made towards r, or ¢ or r,.

i o0

at J,,

d

and

i oo
dt J,

5 o0
— 5rr /Tr d/i(?“r) %

* ) dy
i ). dﬁ(@)—@/m dr(¢p) a

dk(r,) = W/ drk(r,) ’r

dr,

) dr,

(382)

(383)

(384)

With the instant speed v(t) of a BSP on the y coordinate and without signal time

delay considerations, we have
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> o (t) cose
O d t
5 ). dr(p) = = - cos ¢ dy d—f N — U<T) sin ¢
and
) o 11 . dr,  dr,
b, ), U =g, e de dt — dt

We get for the time differentiation of froo dr in the direction of r,

d [ 1 o .
pr 8 dk(r,) = — 5 v(t) :—z sinp cos ¢ dp
and in the direction of ¢

d [* 1 o .
pr : dr(p) = — 5 v(t) :—2 sin g cos @ dp
and in the direction of r,

d [~ 11 dr,
%/” dk(r,) = 3 sin p dp r

(385)

(386)

(387)

(388)

(389)

(390)

7.1.2 Deduction of the time differentiations at a point P of the longitudinal

and transversal fields for a BSP that moves with v.

The time differentiation for the longitudinal field was

d [ d

Tr

B 00 d 00 [e] ng
— dH, = — —|H dk 5, — Hy — dk s H dk — 8§ 1
dt . s dt[ s] /TT R Sp Sdt/ /{Sr"‘ s /TT K dt SLP (39)

and for the time differentiation of the longitudinal field we get

d [~ - 1d 0 o .
al : dHg = — 5%[}!5] :—T singp dp 5, + H, U(t):—% sing cosp dp S,

1 1 dr, 1 o . _
—§H5; Singodapd—zgr - éHsv(t):—% sin® ¢ dy 5,

The time differentiation for the transversal field was
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d [* - d o d [~
7 8 dHn:a[Hn] /m d/@'S»y—l-Hn%/ dk 5, (393)

Tr

and for the time differentiation of the transversal field we get

d [ 5 1 d To . _ To . _
7 : dH, = 5 %[Hn] . sinpdp s, — H,v r_,? siny cos ¢ dy 3, (394)
+1 1 p dr, _
— H, — sin — 5
2 Ty 7Y

We now analyze three cases: First for speeds v < ¢, second for speeds where
Av = ¢ — v < ¢ and third for v = c.

a) case with v < c.
For v < ¢ we get for H,

d
Hy=cv/m  and E[HS] =0 (395)
and for H,
d dv
H,=vvm and E[Hn] == vm (396)
and for r,
h dr,
ry = FC and d—z =0 (397)
b) case with Av < c.
We have that
E2?> E? with By =mc——— (398)
-5
and
1 3
d v?] 72 v? 2172 | do
For the longitudinal field Hy we get
E, d 1 -3 d
H, ~ \/F and a[HS] -3 E, E, %[Ep] (400)
P

and for the transversal field H,, we get
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1 -1d
H,~\/E, and E[Hn] = E,? E[Ep] (401)
and for r, we get
hc dr he d
o= — d = - — — 402
©TE, " B @ (402)
c) case with v = c.
If simultaneously v — ¢ and the rest mass m — 0 we define that
lim —— = m, (403)
738 1= 22

c2

where m,. is the mass of the BSP with light speed. We also define that

me=— with E.=hw (404)

With v — ¢ and m — 0 we also have

E,—0 H,=0 H,=+E.=\/m.c (405)

For v = ¢ we have

dv d c d
@w_ L) = 4 4
=0 gl 2 m. dt [me] (406)
he  d nod
_ 0~ - - — — 4
To=Tee =" @ [7o.] m2 ¢ dt [me] (407)

7.2 Induced force on a static BSP placed in a field dH that

changes with time.

We form the closed path integral according eq.(222) from sec. 4.6

did [> -
— — H 4
2rRdt ), AHn (408)

The concept is shown in Fig. 54.
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Figure 54: Geometric relations to calculate the closed path integral of d' H,,

Even though the tangential values % frio dH, of the fundamental particles are not
distributed in opposed pairs symmetric to the probe BSP, so that the rotational mo-
mentums J,, form regular opposed pairs, they can be replaced by an equivalent config-
uration of rotational momentums of equal dimension resulting in the same closed path
integral.

This equivalent configuration of opposed rotational momentums generate linear
momentum dp on the probe BSP placed in the variable field.

The linear momentum generates a force dF;, given by
1 - d [~ - o
dF, = - ¢ — - — dH,, dH, 409
c 2rRdt ), /r P (409)
with dH,, from the static BSP.

To obtain the total force F;, on the static BSP we have to integrate over the whole

p

space around the static BSP.

Note: The field dH,, generated by the moving BSP is the same for negative and
positive moving BSPs. The induced force on the probe BSP results from pairs of op-
posed dH,, that pass from the moving to the probe BSP. The induced force is therefore
independent of the signs of the interacting BSP’s.
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7.2.1 Force induced on a static BSP by the transversal field dH,, of a BSP

that moves with v.

To calculate the momentum or the force on the probe BSP, all closed path integrals in
the space around the probe or test BSP must be added, what is mathematically nearly
impossible. To work with a more practicable instrument we take as a representant of
the integral over the whole space a well defined closed path integral, divide it by its
area and take the limit when the area tends to zero. The substitution of the whole
space integral by the rotor at the point of the test BSP implies the existence of a
proportionality between these variables.

We start with the equation for the force dF;, generated by a no specifically defined

closed path integral contained in a plane orthogonal to the plane formed by v and r,.

1 dl
AP == § oo E ", / dH, [N (410)

Tp
and define a special closed path integral that is positioned relatively to the test
BSP so that r, = R and ¢, —

We get for
e 1 To, d, ro d
/R dH,, = 5 H,, 7 sin ¢, do, — 27r = 1/ » € —= dp, (411)

We put the obtained expression in the equation for dF;, and change terms resulting

dry dld [

Ey, = — Jmyr,, dpo, —L — dHn 412
" 4 Top @0 50 27 TR2 dt (412)
Now we take the limit for R — 0 and obtain
./ d Dy t d /oo dH (413)
T P o T )
or
_ d [ _
szn = Kip rot E dHn [N] (414)
with
1 d
K;, = 1 VM To, Ay 2—7: (415)

Now we introduce a transformation to overcome the undefined variables dy and d~y

and define

J’ dk 1 r,
R =
A Afy 47 7"2

dr, sing (416)
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and get as general expressions

/ / 1 o .
d H,=H,d /f:—HnT—dn sin ¢
47 r2
and
’ ’ ]. To .
d Ho=H;d k= — Hy; — dr, sing
47 r2

Tr

We get as general expression for the force

, 1 dl
F, = — . — 'H, 'H,, N
d F, orR dt d / d [N]
with
) = F,
d F; dFi,

" Ap Ay Ay, Ay,
and for the specially defined closed path integral

! = 1 d 0 ! =
d F;, = 8—7Tw/mpropr0t£/ d H,

Tr

with

/- 1 o .
d Hn:—HnT—drT siny n
4 r2

Tr

(417)

(418)

(419)

(420)

(421)

(422)

7.2.2 Force induced on a static BSP by the longitudinal field dH, of a BSP

that moves with v .

We start with the equation for the force dF;, generated by a no specifically defined

closed path integral contained in the plane formed by v and r,.

1 dl
dF;, = _— — dH dHy, N
: MR dt / V]
with
> 1 Top . dry
/Tp dH,, = §HS” E sin g, dgop2—7:
and

E2
H,=+FE E,=—2 H. =c./m.
S S S \/m Sp ¢ mp

(423)

(424)

(425)



If we put these expressions in the first equation and change terms we get with

R =1, sinyp,

1 dy, 1 [ dl d [*

dES = Z C /My TOP sin2 ©p dQDp E E @ . % . dys (426)
If we chose the closed path integral so that ¢, = 5 we get
_ 1 d [~ _
dF; = o /My, 1o, dep, dry, Tot 7 8 dH (427)
We define that
, dF;
d F;, = ’ 428
Ap Ay Ap, Ay, (428)
and get
/= 1 d [ ., -
d F;, = . /My 7o, TOL pr : d H, (429)
with
/= 1 To . _
d Hy = yym H, 2 dr, sinp § (430)

Note: If we compare eq.(421) and eq.(429) with the corresponding equations from
standard theoretical physics

F=qF =—q—A (431)
with

- Mo j(f/) ’
A=— dv 432
A ) |r =7 (432)

we conclude that the vector potential field A is related to the field d'H through

_ 1 0
A=———/m, rop/ rot / d H (433)
v

7.3 Induced linear momentum balance between static and

moving BSPs.

For practical purpose we introduced in sec. 7.2.1 the rotor as representative of the
space integral assuming proportionality between them. In what follows we differentiate

between aligned and not aligned particles.
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7.3.1 Induced linear momentum balance between not aligned static and

moving BSPs.

The forces induced on the static probe BSP are defined by the equations (429) and
(421).

! = ]. d © A
F,= — ./ — H 434
d F;, p mpropmtdt/”d s (434)
and
d'F = K D (435)
in = g VI e TN . "
where
d'H,=H,d'xs and dH,=H,drn (436)
with
H, = Hy(v) H, = H,(v) v =v(t) (437)

The function d '« has a rotational symmetry around the velocity vector o , and

complies with

I

d'k(ry, @) =d K(ry, T — @) for arbitrary ~ (438)
where
/ 1 7 : .
d k= In 2 dr, sinp with T =1(t) v = p(t) (439)

The rotor can be interchanged with the time differentiation resulting

/

— d ﬁls 1 d > ! _
d F;, = e VT To, g7 rot /Tr d H, 5 (440)
and
! = d/ﬁln 1 d ° / _
d F;,, = prleae /My To, s rot /TT d H, n (441)

The corresponding linear momentums are shown on Fig. 55.
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_d‘pi,,

Figure 55: Linear momentum balance between not aligned static and moving BSPs

We get for a constant velocity v

cosp = — cosf

To _
59,2 /My To, - H cos0 s,

T

dp = — df

o . B 1
dp,.=05 + 05 +
and
;L 1 To _ _ _
dpin:_WJmpropr—QHn cos 5, + 05 + 035,
with
§5=-35  n=
p=m—0 sin ¢ = sin 6
and
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dr, g v .
il cos 6 i sin 0 (446)

Because of the symmetry of the function d ' the potential linear momentums d ' p;
at the symmetric points P and P’ are opposed as shown on Fig. 55. That means, that
if a probe BSP at the point P absorbs the angular momentums of the regenerating
fundamental particles that produce the linear momentum d'p; at the moving BSP, the
corresponding angular momentums at point P’ are not more compensated when they
arrive at the nucleus of the moving BSP producing there the opposed linear momentum
—d'p;.

Note: The direction of the induced force is independent of the sign of the lon-
gitudinal angular momentum of the regenerating fundamental particles of the probe

particle.

7.3.2 Induced linear momentum balance between aligned static and mov-
ing BSPs.

We describe now the mechanism how the linear momentum is exchanged between
aligned moving and static BSPs.

The concept is shown in Fig. 56.

We start with the moving BSP 1" with the speed v; and momentum p, which is
regenerated as BSP 1 through its longitudinal dH,, and transversal dH,, rotational
momentums. When BSP 1 aproximates to the static BSP 2, the regenerating rotational
momentums dH,, from BSP 2 will take over the rotational momentums dH,, from BSP
1. When BSP 1 looses its transversal rotational momentums it stops to v = 0, and BSP
2 now moves with the speed vy and the momentum p, that is equal to the momentum

that BSP 1 had before stopping (conservation law).
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Figure 56: Linear momentum balance between aligned static and moving BSPs

7.4 Resume of origin of linear momentum.

The energy of a particle is stored in the longitudinal and transversal angular momenta
of its regenerating fundamental particles.

Linear momenta are generated by opposed transversal angular momenta that com-
ply with the requirements for generation of linear momenta (sec. 2.10).

Opposed transversal angular momenta that comply with the requirements for gen-

eration of linear momenta are generated by
e a moving particle
e the crossing of longitudinal angular momenta of two particles
e the crossing of transversal angular momenta of two moving particles

Opposed transversal angular momenta of a moving particle, that comply with the
requirements for generation of linear momenta, can be absorbed by the regenerating
longitudinal angular momenta of an other particle, generating on it the corresponding

linear momenta (Induced linear momentum).
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The following Fig. 57 shows a schematic representation of the generation of the

induced force by a moving BSP on a static BSP.

Moving BSP Static BSP

J

Vector pro duct between square

roots of emitted longitudinal and

regenerating longitudinal angular
momentums

v

Transversal angular Longitudinal angular

momentum on regenerating | | momentum on regenerating

fundamental particles fundamental particles

J v

Symmetric transversal angular

momentum on regenerating
fundamental particles of static BSP

v

Linear momentum on static BSP responsible

for induced and gravitation forces

Figure 57: Generation of the induced forces.
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7.5 The induced far force field of an oscillating BSP.

We start with eq. (421)

[ 1 d & I =

d F;, = S Vi To, rot %/ﬁ d H, (447)
The equation (394) of the transversal field of a BSP that moves with v < ¢ is with

d'H, = (2r)~' dH, and dr,/dt = 0 and 5, = 7

d [ - 1 dv r, . 1 o . _
pr 5 dHn=+E\/Ed—::—Tsmapn—%\/EUQ%smgpcosgon (448)

T

We now calculate the far field of an oscillating BSP in neglecting the secong term
that is invers proportional to 72.

Note: The longitudinal field eq. (392) can also be neglected for the far field because
it is also inverse proportional to r2.

We introduce now a change of coordinates.

O=m—¢ sin = sin f cosp = —cosf dp = — db (449)

The concept is shown in Fig. 58.

Figure 58: Coordinate transformation for the calculation of the rotor
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d [ . - _
pr dH,=C,=C,e,+C,e,+Cyeéy (450)
To consider the time delay we define an oscillation with a time delay

t, = = as a function of r,.

Y= — Ym sin [w (t — E)] and with Um = Ym W (451)
c

Tr Ty

V= —, COS [w (t - z)] o = Um W sin [w (t - ?>] (452)

and
d r
d:’}r =—Up % sin [w (t — %)} (453)
So we have that
1 o . .
C,=0 07:4—\/771 Umwr— sinf sinn Cyp=0 (454)
T T

with

) )

C

The components of rot C,, are given by

— 1 o . ~
(rot Cy,),, = o VI U w 7“_2 cos@ sinn (rot Cp)y =0 (456)
T 72
= 1 w?r, .
(rot Cy)p = — v/m v, — — sinf cosn (457)
dm cr

T
For the far field we neglect all terms that have an inverse proportionality greater
than r.. We get

(rot Cp),, =0 (rot Cy,), =0 (458)
_ 1 2
(rot Cp)g = yym vm v, Y o ging cosn (459)
T cr

T

The far force field of the oscillating BSP in relation to the mass is

d'F; 1 m W2 N
Um & l } (460)

Top To — — sinf cosn ey k:_g

My /m T 32 T C

with r,, the radius of the static test BSP and r, the radius of the particle that
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moves with v.
The far force field is proportional to w? and inverse proportional to 7, and coincides
with the form of the far oscillating force of an electric dipole that is equal to
_ F, 1 po w?

N
E = 0  Tncr & sinf cosn ég [5] (461)

with p, = y,, @ the electric dipole moment.

7.5.1 Induced power on a static BSP that is in the far field of an oscillating
BSP.

The energy of the far field is stored in the transversal rotational momentum J,, of the

regenerating fundamental particles of the oscillating BSP.

If we introduce a static test BSP in the oscillating far field, a force d'F; = m, ddif
will actuate on the particle and give a kinetic energy AE = % m, A%v, in the time

At = Kr?. The imparted kinetic energy is absorbed by an external force and reduced
to zero.

So we have that

2 " N2
LAY ap_ (At d F)° AE

1 _1K2T4
2 m, 2 my, 2 My

AFE = °d'F? (462)

The above energy is produced in the time At what gives a power of

AE 1 At 1 Kr2
At 2 m, 2 my

If we consider that the test BSP oscillates with the same frequency as the main

BSP and therefore both have the same radius r, and mass m, we get for the power

density

1 1 2Km7”g v£w4 » ) ”
S_ﬁ [32#} c2 7}2 sin“ 6 cos [w <t—;>}

O

The power density is proportional to w* and inverse proportional to r2 and coincides
with the equation of an electric oscillating dipole.
We note that the energy emitted by a BSP through their emitted fundamental

particles, returns with the regenerating fundamental particles, except it is absorbed by

the regenerating fundamental particles of an other BSP.
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7.5.2 Quantification of the irradiated energy of an oscillating BSP.

The energy irradiated by an oscillating BSP is given by the change of velocity with

the time, thus by terms with %. For v < ¢ we must consider only the time variation

of d'E,, because the time variation of d’F, has no terms with ‘fi—g.

In general we have for a particle moving with speed v

d'E, =E,dx /d’En:En/ 4k A=

d [ d * d [ , d [ ,
- d E, =—|E,] /TTd/{%—En%/ d k(r.) —I—Ena/”d/{(gp)

dt J,. dt

Tr

With the equations from sec. 7.1.1 and with v < ¢ we get

d dv
muv dt[ ] mov -
d [~ 1 o 1 dv r, .
7 8 dEn:—%mv?’:_g sinp cos ¢ —l—%mvd—::—r sin ¢
For an oscillating BSP with
. v .
Y= —Ymy Sinn V= —U,; COST 7 = Umw singy U = Ym W

- dy dry

(465)

(466)

(467)

(468)

(469)

we get for the time differentiation of the irradiated energy, that is defined by the

second term with %

d [ 1 Too . .
— d E,, =—-—m yfn w? 2= sinp sinn cosn
dat J,.. 2m Ty

Note: We define now the following nomenclature:

e 1, for the radius of the oscillating BSP
e 1,, for the static test or probe BSP
e 1, for a BSP that moves with speed v

e 1, for a BSP that moves with light speed.

(470)

We are interested in the irradiated energy during a certain time period and in the

space defined by the space angle dy sin¢ dy. The mentioned amount of irradiated
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energy is the same for all distances 7, so that we can chose a convenient r,. = r,_ and

To

= < og it is m &~ wt and we get

integrate over time. For w

: L [ferd [~ 1
d E,, :;/0 [E/r%d Enm} dwt = — Emyfn w? sin ¢ sin’ wt (471)

where

d /Enab = / d lEn'L'r'r (472)

~

The mean irradiated energy during a period from wt = 0 to wt = 7 is

= 1
d E,,= —my2 w sinp (473)
8m

Nab

We consider that dE, , = d E,., do dy

dE,, =

1
— my? w? sinp dy dy (474)
8T
and calculate the irradiated energy from ¢ =0 to p = 7
5 2 1 2 2 '
dE,,=—my,w dy=dE,, (475)
©

-0 8

The deduced energy d E,, is the energy of an irradiated BSP that moves with light
speed ¢ as shown in Fig. 22.

We define an equivalent angular momentum #h,, so that d Enc = h, w.

1

dE,, = . (my Y2, w) w=h, w (476)
T
with
1 2
hy, = g M Ym W and  m,=mdy (477)

The irradiated energy was quantified for a half period of wt. For n half periods we

have
_ 1 9
dEnC:ng(mwymw)w:nhnw (478)
m

7.5.3 Quantification of the transversal component of the irradiated energy

of an oscillating BSP.

We start with the induced force on a probe particle by an oscillating BSP given by eq.
(421)
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d F;, = & /My 7o, TOL C, (479)
T
with
co—L [Tam (480)
n - dt . n

As we are interested in the irradiated part we consider only terms with %.
The longitudinal component is given by the rotor of C, in the direction of r, with
eq. (456) already deduced.
(rot C.,) L o w T cost s (481)
rot Cp)r, = — VM Uy w —— cosf sin
T 27 r2 "
and the transversal component by the rotor in the direction of § with eq. (457)
already deduced.
w? T,

- 1
(rot Cp)p = yp Vm v, — == sinf cosn (482)

c Ty

We get for the induced force in the direction r,

/ 1 To. To .
d F, = o7 VT, Uy w = L cosf sinwt (483)

T

and in the direction of 6

1 w? To_ To,

N

d'Fy =
o 3272 c Ty

sinf coswt (484)

The longitudinal and transversal forces are displaced in time and in space by an
angle of 7 degrees. The concept is shown in Fig. 59.

For the far field we neglect the induced force in the direction 7, and concentrate on
d'Fy.

We assume now that the oscillating BSP and the probe BSP are electrons and that
for v, < c the radius r,_ =~ 7,,. As we are interested in the average irradiated energy
during a half time period in the space defined by the space angle dy sin ¢ dv, we chose
again conveniently r, = r,_ and with n = wt we get for the induced force between the
oscillating BSP and the probe BSP

/ 1 2
d Fy = 3272 VI /Ty Uy l To, Sinf coswt with U = Ym W (485)
T c
We calculate the average value from wt = —7 to wt = +7, make m, =m

and get with v, = y,, w
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Tr,=A/2

L d - = d -
dp, o« roty, —dH dp, «crot, —dH
dt dt
Figure 59: Longitudinal and transversal potential momentums of irradiated energy
1 w>

6.3 M Ym o, sin 0 (486)

The force d ' Fj is transmitted from the irradiated BSP with light speed to the probe
BSP in the time At.

The irradiated transversal linear momentum defined by the space angle

d'Fy =

df sinf dv is, considering that d py = d ' pg dO dv

1 3
d pg = e At m Yy, % 7o, Sind df dy (487)

We now integrate over 6 from 6 =0 to 6 =

™

2

%d‘ LA A 488
/90 Po= Jops =0 Um T Mo 41 (488)

The transversal linear momentum, defining m., = m dv is

3

_ 1 w
dpgc = W At 7’)’71,y Ym 7 T'Op (489)
and the energy of the transversal linear momentum is
_ 1 3
dEy = At 1o, My Yo W (490)

¢ 1673
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The irradiated energy was quantified for a half period of wt. For n half periods we

have

dEy, =n At ro, My Ym W =n hy, w (491)

1673

7.5.4 Analysis of the quantified components of the irradiated energy of an
oscillating BSP.

For the far field the irradiated energy d E,_ must be equal to the transversal irradiated
energy d E, .
If we now take into consideration that the energy hw is the minimum irradiated

energy of a BSP that oscillates with the frequency w we have that

1

dE_’nc:8—7T(m7yfnw)w:hw:mcc2 (492)
and with m., = m, we have
Y = VB = (493)
Also we have that
L m, Yz, w? = ! At ro, My Yo (494)

1Y 1673

From the last two expressions and with At = K r,, r,, we get

2712\8r e 2w +\8mec he he
TopTolTo2 = T 0 = T K 2 hw hw

K =5.42713-10* s/m?  (495)

and with

212 /8t m ¢

T =4.9828-107% [Jm] and hc=3.16152929-10"2° [Jm]  (496)

we can write that

212 /8t m ¢

% = 15.76056 - h ¢ (497)
We get that
hc  he he he he he
Top Tol To2 = 15.76056 m 2 E a = 15.76056 E E E (498)
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We conclude that

Z—i ro1 = 2.507 Z—CC To2 = 2.007 Z—i (499)
We have deduced the forgoing equations under the assumption that v < ¢ what
means that £, > F,.
Note: The irradiated energies d E,,_ and d E,, were deduced on different differential
bases what explains that the factor 2.507 # 1. The first differential energy d E,,. was

deduced based on dk while the second d Ey_ on the rotor of dk.

Top = 2.507

We now define that in general the radius of a BSP is given by

e 500
o= % (500)

where for the energy E we have

E=,/E2+ E2 for BSP with v # c (501)

and
E = hw for BSP with v=c (502)

7.5.5 Distance between one pair of BSPs with v = ¢ and its relation with

the stored energy.

The energy of one pair of BSPs with v = ¢ is

E=ho=hv for BSP with v=c (503)

The energy of one BSP we designate with E(ggp) and have that E = 2 Eggp).
Also we define the distance between the two BSPs as d = ¢ 7, where 7 is the time to
move from one BSP of the pair to the other with light speed.

Because of

P, = = = (504)

we have

d=cT=771, =\2 (505)

We now write
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E=hv=2Egsp TV with h =2 Egspy T = constant (506)

or

d
h =2 Epsp)y — = constant with d= (507)
c

2
resulting that

hec=2Egspyd=2Epsp) 1o, = Egspy A = constant (508)

We see that if we concentrate the energy of a photon on one pair of BSPs at the
distance d = A/2, the product of the energy of the BSP and the distance is a constant.
It is like a spring with a force f oc 1/d?, where the product of the stored energy with
the distance is also a constant. We also see, that for BSPs with light speed, the radius
r, decreases with the energy.

From

To = — E=hw c=vA (509)

we conclude that

ro = — (510)

7.6 The Maxwell equations.
7.6.1 The 1. Maxwell equation for the far induced force field.

We start with eq. (460) of the far induced force field of an oscillating BSP with m = m,,

and 1, =1,

L 1 5 Um WP e\ _
d'F, = 353 M 7o . sinf cos [w (t— ?ﬂ €p [V] (511)

To arrive to an expression that is equivalent to the 1.Maxwell equation

d . - 1 _

we calculate the time differentiation of d'F}, take three times the rotor of the

cumulated value of d'H, and show that the results obtained are proportional.
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d. - 1 5 Um w3 , r\1 N
E[d Fl=- 352 M 7o . sinf sin [w (t— ;)] €y [—} (513)

The cumulated value from d ' H,, for v < ¢ is

R 1
/ d H, = — Jmuv 2 sinfa (514)
r AT Ty

and with

omefs ()] aep()] o

we get after the three rotors, neglecting for the far field all terms with an inverse

proportionality greater than r,., the components

rot rot rot ' 7,1 = rot rot rot ' 7n =
d'i,), =0 d'f,), =0 516
< 1 v, W . L
(rot rot rot d Hy))pg=—— — To V/m sind sinn & (517)
r Adm r. ¢

If we now compare the time differentiation from d'F; with the §-component of the

three rotors we see that they are proportional and that we can write

d. .

_ 1 S
%[d F]=— - c® 1o /m rot {rot rot / d Hn} (518)
m P

This is the flow-law for regions free of BSPs.
Defining the flow density as

O = —rot rot/ d'H, (519)
we get
LB =X 2, i rot © (520)
qld Fil =g ¢ rov/m o

This equation has the form of the 1.Maxwell equation

_ 1 _
%[E] = rotH (521)

Written in integral form we get
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d. - - 1 <, -
/ —[d' F]-dA=— —cryvm ]{ rot rot / d H, |-dl (522)
4 dt 8T r

7.6.2 The 2. Maxwell equation.

To get the induction in a closed circuit we must build the rotor of d'F;, from eq.(421)
td'F, ! Vm ry rot rot d /Ood’H (523)
ro i = —/mr, rot rot — n
" 87 dt J,,
The time differentiation we can exchange with the rotors and we get
td'F, — Vm L e L (524)
ro in = g VM To o | TOETO 5 n
Introducing the previously defined flow density
O = — rot rot/ d'H, (525)
we obtain the 2. Maxwell equation

- 1 do
rotd F,, = — — \/mr, — (526)
8T dt

This equation has the form of the 2. Maxwell equation

_ d .
rotE = —pu — [ H | (527)
dt
In the two Maxwell equations we recognize the equivalence between

E=d'F, and H=6 (528)
If we define a vector potential Ag as follows,
O = rotAeg with div® = 0 (529)
we get the wave equation
Ady - LT g A Wy
o~ 5 gpie= 0 with o = —rot : d H, (530)

7.6.3 Equivalence between traditional fields based on Coulomb charge and

fields based on mass charge.

From the 1. Maxwell equation (520) we have:
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d. - 1 - _ <,
%[d F| = o 1y v/m rot © with ©=—rot rot/ d H, (531)
™ T

r

The present work defines the charge as the difference between the mass of the

constituent BSPs of opposed signs of a particle (@Q,, =mass -charge).

Qum=Nm [k Q=Ngq [C] szgcz (532)

with ¢ and m respectively the charge in Coulomb and the mass in kilogram of an
electron. N represents the difference between the constituent number of electrons and
positrons of a particle.

The electric field is then defined as the force per mass-charge as

’

- dF q
E, = N/k E,=—F 533
g [N/ 2 (533)
with E representing the electric field in Newton per Coulomb. We get
dE. m d - 1 Ar _
e - °\/ t O 534
t q dt 8t @ mre (534)
With
dE 1 _ _ - o,
Pl rot H and  H,, =0 =—rot rot/ d H, (535)
€o Tr

_ €, C° T — — m =
H= -2 ° H,, d E=—F, 536
T vm an . (536)
and define that
By, = 1o H,, and D,, =¢, E,, (537)

7.7 Divergence.

7.7.1 Divergence of the transversal field dH,.

The components of the transversal field from a not polarized BSP are

/ dH, =C, & + C, &, + Cp & (538)

with
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r

C,, =0 C, =

/ JH,

If we use the already defined coordinate transformations we get

Cy=0 (539)

div / dH, =0 (540)

which is equivalent to the Maxwell law

divH = 0 (541)

Note: The defined forms of polarizations for BSPs with light speed allow that

div f:o dH,, # 0. The source of the field dH,, is then a surface.

7.7.2 Divergence of the force field dF.

The total force on a probe BSP results from the static (Coulomb) and the dynamic

forces.

F=F,+

. o / iF = / dF, + / iF, (542)

Now we analyze the two components of the total force.

e In sec.4.2 eq.(201) we have seen that the static force Fy on a probe BSP(2)
produced by a BSP(1) is radial to BSP(1). The divergence outside the radius
of the BSP(1) is therefore zero. The divergence at the point of the BSP(1) is
proportional to the mass density p,, of the BSP(1). In sec. 4.7 we have calculated
the divergence of Iy = F, with An; = Any =1 and K = 5.42713 - 10* we got

V- F, =3.1826 - 10° p,, (543)

For a complex particle formed by more than two BSPs we have

V- F, =3.1826-10° An p, (544)
with An the difference between positive and negative BSPs.

We have defined that the total induced force on a probe BSP, produced by the
field of a moving BSP, is proportional to a special closed path integral when
the area enclosed tends to zero. That definition has lead us to the following

expression.
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_ d [ _

with K; a proportional constant.

As the divergence of a rotor is always zero we have

_ d [~ _
div dF; = K; div {rot %/ dHn} =0 (546)

7.8 Lorentz transformation.

The present theory is based on fundamental particles with longitudinal and transverasl
rotational momentums. Based on this new approach we have deduced the four Maxwell

equations.

e 1. Maxwell equation for the induced force field d'F;

L1 Y
d Fl=—cr,v/m rot © with @:—rotrot/ d H, (547)

8

e 2. Maxwell equation for the induced force field d'F;.

. 1 d® _ o
rotd F; = — — \/mr, — with © = —rot rot/ d H, (548)
8T dt .
e Divergence of the static force field of a complex particle

V.- F, =3.1826-10° An py, (549)

and the divergence of the induced force field of an BSP

' = 1 o,
divd F; = div (g\/ﬁrorot%/n dHn> =0 (550)

e Divergence of the cummulated transversal rotational momentum field of a BSP

dw/ d'H,=0 (551)
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The four Maxwell equations deduced with the present approach have the same form

to the Lorentz transformation.

7.9 Basic field equations.

The fields of the present theory are:

d'H,=—-H,d're. and d H,=H,d reé,
with
d'H*=d'H? + dH?=[d'E, + d'E,]d «

where d 'k in the coordinates of Fig. 58 is

/ c v ) r
d/{:_ ,_s X ,_r _;drr
20| |0 |0, || 72
which isfor 0 <v <¢
/ 1 T .
dk=—-—dr, sinf
2 r2

T

The divergences of the two fields for v < ¢ are

- = 3m ev/m  3m% [mc2 37?2 [E, —
d Hy = =— = = — d -d H,
v 8 1, T\ a2 1 Vg otV

with S, = 4772 the area of the particle and g—;’ the energy density.

For massless points we get

V-d'H,=0 and V-dH,=0

and we can define vector fields

d'H,=Vxd M, and dH,=Vxd M,

For the cumulated fields we have

/dlf_[s:—Hs/ d,/fé,, and / d/ﬁn:Hn/ cl//-ﬁ;éV
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as the four Maxwell equations of the standard theory, and are therefore also invariant

(552)

(553)

(554)

(555)

(556)

(557)

(558)

(559)



with

° 1y,
/dn:§1 sin 6 (560)

The divergences for v < ¢ are

v/ d,ﬁszgc\/m and v/ d'H, =0 (561)
Tr TO Tr
From
- d'pn 1 d > -
d F, = = — t— d H, 2
i 0 e vVmr, ro o /TT n (562)
we get
= 1 <,
d p, = . vm r, rot / d H, (563)
T v
and
V-d'p,=0 (564)

which is the conservation law for the linear momentum due to the d H,, field. The
same result we get for the linear momentum due to the d'H, field from eq.(429) for
d'F,.

We define vector fields

/ — = = 1 e /=
d p, =V x N, with N, = 8—\/ﬁro / d H, (565)
0 .
and
/ — — _ 1 o,
d ps =V x Ny with N, = 8—\/ﬁro / d H, (566)
T .
and the corresponding divergences are
V-N,=0  because V- / d'H,=0 (567)
and
V-N, = 1\/_ ?/wd’ﬁ— 5 (568)
TR Ve )T e T

With the 1. Maxwell equation (518) where d ' F; = d'F;,
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d

1
i

d/Fin] - -5 A r, /mrot [rot rot / d/Hn}

and the equation (562) for the force d'F;, we get

— — oo /= 1 d2 o /=
H - — H, =
VxVx/ﬁd n+c2dt2/”d n 0 (569)
Because of
VxVx=VV - A (570)
we get
A/ood/H _ L& P - (571)
v " c dt? J,, "

A similar expression we have in standard theory for the vector field A after intro-
ducing the Lorenz gauge condition. We conclude, that the present theory is Lorentz

invariant without the need of any gauge.

7.10 Synopsis of the fundamental equations for the generation

of linear momentum between BSPs.
The Fundamental equations for the generation of linear momentum can be classified in
1. between two static BSPs
2. between two moving BSPs

3. between a moving and a static BSP

1) The equation for the generation of linear momentum between two static BSPs
(static) is (See Fig. 26) based on the postulate 6 for the interaction between longitudinal

angular momentums J, of FPs.

) _ a ( dl - (5., X 3g,) /°° /°° _
S R s ST H H 2
d psiar Sk . R{ 5 e ; er ARy 5 sy Ky 0 SR (572)

where 5g is a unit vector perpendicular to the plane that contains the closed path
with radius R.

After integration over the whole space we get
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Dstat SR = /d/pstat SR (573)

The linear momentum generated between two static BSPs is the motor of all move-
ment of particles.

Equation (572) gives the curve from Fig. 29 that describes the Coulomb law for
d>r,.

2) The equation for the generation of linear momentum between two moving BSPs
(dynamic) is based on the postulate 7 for the interaction between transversal angular

momentums .J,, of FPs.

dl
A'Dayn 51 = - f{ { % / H,, dr,, / H,, df%} 5 (574)
R

(See Fig. 47). Equation (574) contains the Lorentz, Ampere, Bragg and one com-

ponent of the gravitation laws.

3) The equation for the generation of linear momentum between a moving and a
static BSP (induced) is based on the postulate 8 for the interaction between the angular

momentum .J of one BSP and the longitudinal angular momentum .J; of another BSP.

d’ pmd S5p=— f{ 5 R / H, d/f”/ H,, d/i,«p} 5 (575)
/ CZZ ‘n

d'p™ sp = H,d d 5
pmd R cjgz{ 2R /T I{n/ Krp} o (576)

(See Fig. 53 and Fig. 54). The upper indexes (s) or (n) denote that the linear
momentum d pi,g on the static BSP is induced by the longitudinal (s) or transversal
(n) field of the moving BSP.

Equation (576) contains the first and the second Maxwell laws and one component

of the gravitation law.

The force for all the fundamental equations is given by

!/

dp

d'F Sn=xpor with  At=Kry F:/d’F (577)

Note: The coordinate system selected to decide if a BSP under observation is
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moving or not is the coordinate system of the measuring equipment of the laboratory
with its BSPs in rest in that coordinate system, BSPs that provide the regenerating

fundamental particles for the BSP under observation.

The force on a BSP that moves with the speed v and which is exposed to the above
listed momenta is

Ftot = Fstat + den + F;(;& + F(n) (578)

ind

If there is no isolated moving BSP inducing on the BSP under observation we have
that

Eot = Fstat + den (579)

Note: With the adequate definitions all above listed forces are derived as rotors
from the vector field generated by the longitudinal and transversal angular momenta
of the two types of fundamental particle defined at the beginning of this work.

!

= dp 1 d oo, _
F=0P_ 2y e i
d 7 g, Vmro rot o /TT d (580)

7.10.1 Relativistic expressions of the fundamental equations.

In sec. 7.10 the general form of the fundamental equations for the generation of linear
momentum between BSPs was presented. This section shows the relativistic influence
of each differential part of the equations. We start first with the repetition of some

definitions and conveniently formulation of equations for our objective:

d’,{:/ dl{zro/ d¢ =r,d'¢  with d’g:/ de (581)

, hc hc hc
At = Kry,r,, with r,= 5 = \/EETEZ% =3 I6] (582)
B2 2 2
At=K BB, with fi=y/1-= (583)
m2c c

H,=\/E, = oy B -t g _vE (584)

E=\/E24+E2=mc 3" E,=mcp™! (585)
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1) Equation (572) for the Coulomb force can be written in a different differential

form as:

d’/F — d//pstat _ A ”pstat _ EA ”Ep _ a
stat dt At c At c At

H,. H,, d'k, d k., (586)
For Coulomb the BSPs don’t move and it is H,, = Hy, = /mc and we get

d" Fauy = ﬁ me? dlﬁm d/lim = ﬁ me? 1o, To, dlfﬁ d/&Q (587)

and finally with At = Kr,,r,,

" a / ’
d Fue = I mc? d &, d'&,, (588)

It is clear that for the Coulomb force the relativistic factors are 5 = 1 because the

speeds of the BSPs are zero and therefore 5 doesn’t appear in the equations.

2) Now we make the same procedure for equation (574) which is the basic equation
for the Lorentz, Ampere and Bragg forces. The currents that generate the forces are
continuous currents and H,, and H,, are not functions of the time.

B 1

d"den = md Epdyn = mHnl H,, 1o, To, dlfh dlfrz (589)

With H, = /m v 72 we get

muvy U2 ,-1/2
c K !

The S factors in eq. (590) show the relativistic behaviour of the equation.

d"Fyy = By P d'e, d e, (590)

3) Now we make the procedure for eq. (576) which is the basic equation for the
Maxwell and gravitation forces. In this case H, is function of the time and we have to
start with eq. (394) and eq. (421) that follow:

d [ - 1 d o . _ o . _
7 : dHn:§ %[Hn]:—r singp dp 5, — an% siny cos ¢ dyp 3, (591)
i'F = td/md'H (592)
T A T

We modify eq. (591) including the variable dy that was omitted before because of

symmetry reasons.

142



d [ - 0 . d
pr 5 d H, = r_ﬁ sin g cos @ dgp%@ (593)

d . dy _
E[Hn] . sin ¢ dgp% 5, — H,v

DO | —

Correspondingly eq. (592) is modified.

= 1 d > 1" —
d F;, = oy /My T, TOL a/T d H, (594)

The terms in eq. (593) can be separated in factors that are exclusively functions of
v(t) and factors that are exclusively functions of the space coordinates. We can write
eq. (594) as

"= 1 d _ _
d F;, = P /My To, {E[Hn] rotky,,, — v Hy, rotKgmd} (595)
m
where
o Lry . d o o . dy _
K, 6 = 5 ::—T sin ¢ dyp % 5,  and K, ,= :—% sing cos dy % 5, (596)

For Av=c—v << citis

d d

H,~\/E,=+vmcuvp'? and E[Hn] o [(m cv)'/? p71/2] (597)

and eq. (595) writes

"

— 1 d _ _
d F;,, = 8—‘/mp7°op {E [(mcv)l/zﬁ_l/z} rotky,, , — v\/mcvﬁ_l/QrotKgmd} (598)
m

The 3 factors in eq. (598) show the relativistic behaviour of the equation.

8 Corner-pillars of the “E & R” UFT model

The corner-pillars of the proposed model are:

1. Nucleons are composed of electrons and positrons
2. A space with Fundamental Particle (FPs) with angular momenta is postulated.

3. Electrons and positrons are represented as focal points of rays of FPs where the

energy of the electrons and positrons is stored as rotation.
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4. FPs are emited with ¢ or co from the focus. The focus is regenerated by FPs

that move with ¢ or oo relative to the focus.

5. Regenerating FPs are those that are emited by other focuses. A focus is stable

when emission and regeneration is energetically balanced.
6. Pairs of FPs with opposed angular momenta generate linear momenta on focuses.

7. Interactions between subatomic particles are the product of the interactions of
their FPs when they cross in space. The probability that they cross follows the

radiation law.

8. The interactions between FPs are so defined, that the fundamental equations
(Coulomb, Ampere, Lorentz, Newton, Maxwell, etc.) can be mathematically

derived.
9. Neutrinos are parallel moving pairs of FPs with opposed angular momenta.

10. Photons are a sequence of neutrinos with their potential linear momenta oriented

alternatelly oposed.

11. Photons that move with ¢ + v are reflected and refracted by optical lenses and

electric antenas with c.

All experiments that can be explained with the SM must also be at least explained
with the E & R model. The explanations must not be equal to those of the SM.

Note: The fundamental laws (Coulomb, Ampere, Lorentz, Newton, Maxwell, etc.)
were deduced with measurements that took place under conditions where the nucleons
involved were adequatelly regenerated to be stable. At relativistic speeds and at heavy
atomic nuclei the regeneration can become deficient and produce instability. They
decay in configurations that can be adequtely regenerated by the enviroment, in other

words, in stable configurations.

The interactions between subatomic particles take place at the regenerating FPs
that move along the rays with the speed ¢ or co. The laws that were deduced for stable
configurations (Coulomb, Ampere, Lorentz, Newton, Maxwell, etc.) not necessarilly
must work for unstable particles where emission and regeneration are not in balance.

The model “E & R” only takes into consideration stable partikles, in other words,
electrons, neutrons, protons, neutrinos, photons and their antiparticles. Positrons are
only stable in configurations like the nucleons. The many short-lived configurations
are not taken into account because they not necessarilly follow the known fundamental

laws.
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Part IV Miscellaneous 1

9 Quantification of irradiated energy and movement.

9.1 Quantification of irradiated energy.

To express the energy irradiated by a BSP as quantified in angular momenta over time

we start with

h h
E=FBE.=E,+E, = \/[B2+E2  At=Kryr, rO:FC ropzfc (599)

with 7, the radius of the moving particle and r,, the radius of the resting probe

particle. It is

At = Krorg, 22 = Kr? 22— At 22 (600)

Op TOp TOp

with

2 .2

Aot = Atygy = K T = 8.082097 - 107* s with K =5.4274-10* s/m* (601)

We now define E, At and get

h? c? h?
E.At=K =K =h 602
E, 472 m (602)

equation that is valid for every speed 0 < v < ¢ of the BSP giving

E,At=E, Ajt=h (603)

where h is the Planck constant.
Note: In the equation E, At = h the energy FE. is the total energy of the moving
particle and the differential time At is the time the differential momentum Ap is active

to give the force F' = Ap/At between the moving and the probe particle.

In connection with the quantification of the energy E = J v the following cases are

possible:

e A common frequency v, exists and the angular momentum .J is variable. This
assumption was made in Sec. 2.8.1, for FPs of BSPs with v # ¢ that define an

electron or a positron.
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e A common angular momentum .J, exists and the frequency v is variable. This
assumption was made in sec. 2.8.2 for FPs of BSPs with v # ¢ that define an

electron or a positron.

The concept is shown in Fig. 60.

Common v . and variable J

electron / positron

Common h and variable v

/h( /ﬁ / j tc /(h u i ¢
/ / / / neutrino
h h h photon h

Figure 60: Quantification of linear momentum

We define for a common angular momentum J, = h the equivalent angular frequen-

cies v, 1, and v, with the following equations

1
E=E =hv V=R and  E,=pc=huy, (604)

and
E,=mc=hv, v,= =1.2373-10% s* (605)

At
We have already defined the angular frequencies v., v4 and v, for the FPs with the

following equations

E.=E, + E, and dE,=dE, + dE, (606)

With a common angular momentum J, = h it is
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dE. =E.dk = h v, dE, = E, dk = h v, dE, = E, dx = h v, (607)

The relation between the angular frequencies of FPs and the equivalent angular

frequencies is

VZZVGZ.:ZV& + Zyni:,/l/g + 2 (608)

If all FPs have the same angular frequency v,, = v, = v,, = vpp we get

I/:]\fe VFPZNS Vrp + Nn I/FPZQ/l/g + V]% (609)

with N the corresponding total number of FPs of the BSP. If we multiply the

equation with h we get

hVINthFp:NShVFP—|—Nnh,VFpIh\/Vg—|—V£ (610)

or

E=E.=E, + E,=\/E? + E2 (611)

with Erp = h vpp the energy of one FP.
We define the quantized emission of energy for a BSP with v # ¢ defining the power

as
E 1

P="°—F - 12
N LN (612)
p=Ffe_ 1 Jp g [p2ipi_p E,v=P, + P, 613
= ni M VBB =PI R =By 4 Biv=P 4 B (013)

where
P,=E,v P,=E,v P, =FE, v P,=FE,v (614)

For the differential powers we get

dP. =v E. dk dP, = v E, dk dP, =v E, dk (615)

Fundamental equations expressed with the powers exchanged by the
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BSPs.
Now we show that the fundamental equations of sec 7.10 for the generation of linear
momentum can be expressed as functions of the powers of their interacting BSPs.
With

H
dE = FE dk dH =VE dk = H dr and —=VEv=vVP (616)
VAL

the equations for the Coulomb, Ampere and induction forces of sec. 7.10 can be

transformed to

ngR:Fstm ]f{/ J_ Oofid,%} (617)

and expressed as a function of the powers of the interacting BSPs

/

, d 1 o0 o0
d FgR:rng o Zj{ {/ VP d/{rl/ \/ P, dlim} 5p (618)
R 1 72

It is also possible to define differential energy fluxes for BSPs. We start with

dP., = v E. dk dP, = v E, dk dP, =v E, dk (619)
and with
1 To . d'Y 2 .
dr = 5 — dr sing dp —— and dA =" sinp dp dy (620)
2r 27

The concept is shown in Fig. 61.

Electron > \7

Figure 61: Emitted Energy flux density dS of a moving electron
The cumulated differential energy flux is
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o o 1 o ) d B
/ dPe:yE/ di =vE =2 sinpdp - Js! (621)
, , 2 r 2m

The cumulated differential energy flux density is

% 1> 1
/dSe:—/ P, —vpE, - 7 (622)

dA “Ar 3 m?s

To get the total cumulated energy flux through a sphere with a radius » we make

r, = r and integrate over the whole surface A = 47 72 of the sphere and get

J

m?2 s

47 7 / dS, =v E, (623)

Note: The differential energy flux density is independent of ¢ and v and therefore

independent of the direction of the speed v. This is because of the relativity of the

speed v that does not define who is moving relative to whom.

Physical interpretation of an electron and positron as radiating and ab-

sorbing FPs:

The emitted differential energy is

h 1nr, _ dry

E.=F =— - — — 24
dE, e dR IR dr sing dp o (624)
With the help of Fig. 61 we see that the area of the sphere is A = 4772, and we get

h .
dE, = YR dr sinp dp dvy (625)
We now define
dFE, dr sinp dp d ith h (626)
e = 0 Todr sin wi op = ——
h P ap ay h= A A
where oy, is the current density of fundamental angular momentum h.
We can also write
dE, = o, dA with dA=r,dr siny dyp dvy (627)

9.2 Energy and density of Fundamental Particles.

9.2.1 Energy of Fundamental Particles.

The emission time of photons from isolated atoms is approximately 7 = 10~® s what

gives a length for the train of waves of L = ¢ 7 = 3 m. The total energy of the emitted

photon is E; = h v, and the wavelength is Ay = ¢/v;,. We have defined (see Fig. 60,
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Fig 68 and Fig. 69), that the photon is composed of a train of FPs with alternated
opposed angular momenta where the distance between two consecutive FPs is equal
At/2. The number of FPs that build the photon is therefore Ngp = L/(\;/2) and we
get for the energy of one FP

The concept is shown in Fig. 62

Photon

o —hYh —hY h

Legend:
o X

FPs with transversal angular momenta /;

Figure 62: Photon as sequence of opposed angular momenta

Et Et )\t h/ —26 -7
Epp = — = = —=3313-100" J =2.068-10"" eV 628
FP NFP 2L 2T c ( )

and for the angular frequency of the angular momentum h

E 1
Vpp = % =5-=5" 107 s (629)

Finally we get
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CcCT

N2

Note: The frequency v, represents a linear frequency where the relation with the

Vy = NFP Vpp — - 107 NFP Si1 with NFP = (630)

velocity v and the wavelength \; is given by v = A\; 14. The frequency vgp represents
the angular frequency of the angular momentum h.

The momentum generated by a pair of FPs with opposed angular momenta is

EFP

Prp = = 2.20866 - 107 kg m 57 (631)

Note: Isolated FPs have only angular momenta, they have no linear momenta
and therefore cannot generate a force through the change of linear momenta . Linear
momentum is generated only out of pairs of FPs with opposed angular momentum as
defined in sec. 2.10. It makes no sense to define a dynamic mass for FPs because they
have no linear inertia, which is a product of the energy stored in FPs with opposed
angular momenta. FPs that meet in space interact changing the orientation of their
angular momenta but conserving each its energy Epp = 3.313 - 10726 J.

The number Npp, of FPs of an resting BSP (electron or positron) is

E,
Erp

Ngp, = = 2.4746 - 10*? (632)

9.2.2 Density of Fundamental Particles.

From sec. 2.15 we have that

1r, , d .
dE=FE dk =FE 5 r_2 dr sinp dp 2—7 and dV =r*dr sinpdpdy  (633)
r 7T

resulting for the energy density

e E 1, _3

The density of FPs we define as
Wpp = —— = — — m (635)
with EFP =h Vpp = 3.313 - 10_26 J.

The concept is shown in Fig. 63
The energy emitted by a BSP is equal to the sum of the energies of the regenerating

FPs with longitudinal (s) and transversal (n) angular momenta. The corresponding
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Focal Point'.
of BSP )

dE = dN ., E ., dN ., =® ., dV = ———dx
Figure 63: Regenerating Fundamental Particles of a BSP

densities are

(s) I Es 1o (n) I E, 1o -3
w = — _ w =
FP 47 Epp r4 FP 4 EFP rt

As E. = E, + FE,, we get

b=l

The number dNgp of FPs in a volume dV is given with

dNpp = wpp dV and with AV = r? dr sin ¢ dy dy

we get

(636)

(637)

(638)

(639)

With the definition of prp = Erp/c?, where ppp is the dynamic mass of a FP, we

get for the density of the mass

_ prp dNpp

e R kg m™?

(640)

The rest mass m of a BSP expressed as a function of the dynamic mass ppp of its

FPs is
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VO
m = Npp, ipp = —— jiFp (641)
Vrp
Note: In the present theory all BSPs are expressed through FPs with the Energy

Erp, the angular frequency vpp and the dynamic mass ppp.

9.3 Quantification of movement.

An isolated moving BSP has a potential energy

E=E, + E, (642)

which is a function of the relative speed v to the selected reference coordinate. The
potential energy will manifest when the isolated moving BSP interacts with a BSP
which is static in the selected coordinate system.

The time variation At derived for the variation dp of the momentum for the
Coulomb, Ampere and Induction forces between two BSPs, we use also as time varia-
tion to describe the movement of a BSP that moves with constant speed v = Az /At
where dp = 0.

The energy E, is responsible for the movement of the BSP and the number of FPs

that generate the movement during the time At is

Ey,

N = 643
F EFP ( )
The total momentum of a BSP moving with constant speed v is therefore
n Az
with ppp defined in eq. (631). For Az we get
n At
Az = NI(”; Prp — (645)
m
For v =0 we get
v=0 E,=0 NU=0 Az=0 (646)
For v — ¢ we get with At = K r? with r, the radius of the moving BSP
v—c  E,— o0 E, — o0 NI(JQ—MXJ At — 0 (647)
2 K h?
lim Az =lim 2~ S —¢ for v—cC (648)
v—c v—=c M Ep
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},LHi % = (649)

Note: For the isolated BSP moving with constant speed v we have no static probe
BSP with radius 7, that measures the force between them, force that is zero because
dp = 0. There is no difference between the two BSPs and the equation At = K 7, r,,

becomes At = K r2 with r, the radius of the moving BSP.

10 Analysis of linear momentum between two static

BSPs.

In this section the static eq.(572) is analyzed in order to explain

e why BSPs of equal sign don’t repel in atomic nuclei
e how gravitation forces are generated

e why atomic nuclei radiate

Although the analysis is based only on the static eq.(572) for two BSPs, neglecting
the influence of the important dynamic eq.(574) that explains for instance the magnetic
moment of nuclei, it shows already the origin of the above phenomena.

With the integration limits shown in Fig. 64

(p max

Figure 64: Integration limits for the calculation of the linear momentum
between two static basic subatomic particles at the distance d

and considering that for static BSPs it is r,, = r,, = r, and m; = my = m, the

integration limits are

Omin = arcsin% Omaz =T — Qmin  for d > /124712 (650)
d

Omin = arccos

Omaz =T — Pmin  for d < /124712 (651)

o
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and eq.(572) transforms to

m ¢ rg Plmazx P2mazx .
Pstat =~ 75 / / | sin® (@1 — 2)| dips dipy (652)
® ©2

Imin min

The double integral becomes zero for d — 0 because the integration limits ap-

5 and Qe = 5. For d > 7, the

double integral becomes a constant because the integration limits tend to @, = 0

proximate each other taking the values .., =

and Qe = T.
Fig.65 shows the curve of eq.(194) where five regions can be identified with the help
of d/r, =~ from the integration limits:

x107%
14

pstat

1.2

0.8

0.6

0.4

0.2

01 18 21 sigo Y =d/r,

Figure 65: Linear momentum pg,,; as function of v = d/r, between two static
BSPs with equal radii r,, = 7,

1. From 0 < v < 0.1 where pgqe = 0
2. From 0.1 < v < 1.8 where pyq o< d?
3. From 1.8 < 7 < 2.1 where pgor = constant

4. From 2.1 < v < 518 where pyq¢ o %

5. From 518 < v < oo where pgyqr X d% (Coulomb)
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See also Fig. 66

The first and second regions are where the BSPs that form the atomic nucleus
are confined and in a dynamic equilibrium. BSPs of different charges don’t mix in
the nucleus because of the different signs their longitudinal angular momentum of the
emitted FPs have.

For BSPs that are in the first region, the attracting or repelling forces are zero
because the angle between their longitudinal rotational momentum is § = w. BSPs
that migrate outside the first region are reintegrated or expelled with high speed when
their FPs cross with FPs of the remaining BSPs of the atomic nucleus because the
angle § < w. At stable nuclei all BSPs that migrate outside the first region are
reintegrated, while at unstable nuclei some are expelled in all possible combinations
(electrons, positrons, hadrons) together with neutrinos and photons maintaining the
energy balance.

As the force induced on other particles during reintegration described by eq. (576)
has always the direction and sense of the reintegrating particle (right screw of J,)
independent of its charge, BSPs that are reintegrated induce on other atomic nuclei
the gravitation force. The inverse square distance law for the gravitation force results
from the inverse square distance law of the radial density of FPs that transfer their
angular momentum from the moving to the static BSPs according postulate 8). See

sec. 17.3 for induced gravitation force.

The third region gives the width of the tunnel barrier through which the ex-
pelled particles of atomic nuclei are emitted. As the reintegration process of BSPs that
migrate outside the first region depend on the special dynamic polarization of the re-
maining BSPs of the atomic nucleus, particles are not always reintegrated but expelled
when the special dynamic polarization is not fulfilled. The emission is quantized and

follows the exponential radioactive decay law.

The fourth region is a transition region to the Coulomb law.

The transition value V.4ns = 518 to the Coulomb law was determined by comparing
the tangents of the Coulomb equation and the curve from Fig.65. At v;pqns = 518 the
ratio of their tangents begin to deviate from 1.

At the transition distance dy,.qns, where vi.qns = 518, the inverse proportionality to

the distance dyq,s from the neighbor regions must give the same force Fjqps

’ ’

s 1K' 1 K
S TN dyams AL d2

trans

(653)

with K" and K. the proportionality factors of the fourth and fifth regions.
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The transition distance for BSPs (electron and positron) is:

h
dirans = Vtrans o = Virans FC =518 - 3.859-107"% =2.0-10""m (654)

o

which is of the order of the radii of neutral isolated atoms.

The fifth region is where the Coulomb law is valid.
The concept is shown in Fig. 66

5 5
Coulomb Coulomb
Orbital Orbital
electrons * . . electrons

bl lal 0 Jal [b]

trans trans

Potential well

Figure 66: Potential well of an atom.

Fig. 67 shows potential energies corresponding to different theoretical models. All
potential energies from existing models are not defined for the distance between charged
particles tending to zero, what forces to define the potential energy as negative and to
place the zero at infinite.

The potential energy of the present approach is defined for the distance between
charged particles tending to zero allowing to place the the origin of the potential energy
at d = 0.

The potential is given by

d 1
V(d) = / Flor 0d = E/ Dstat 0d for d— oo we get =~1.0GeV (655)
0 0

The energy of 1.0 GeV is the energy necessary to separate an electron from a

positron from the distance between them d = 0 to d = oo.
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Nuclei

core \

V
T\ E&R potential with
zero reference at d=0

Yukawa potential

Hard-core \

potential \ Potentials with zero

reference at Q0

Coulomb-potential

Figure 67: Comparison of potential energies between charged particles

11

Classification of BSPs with v = c.

BSPs with v = ¢ have no nucleus where fundamental particles are emitted and absorbed

and therefore have no charge characteristics and pass through each other without col-

lision. They are constituted of fundamental particles with the energy stored in pairs

of opposed angular momentums J.

BSPs with v = ¢ are classified in two types according if they were generated on

emitted or regenerating FPs.
BSPs with v = ¢ generated on regenerating FPs can be classified according to the

linear momentum they may generate on a static probe BSP, in

e BSP with potential linear momentum p, = pe in propagation direction Fig. 68

a).
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e BSP with potential linear momentum p, = pﬂ opposed to propagation direction.

Same as Fig. 68 a) but with inverted directions of angular momentum J;y and

linear momentum p, = pﬂ.

e BSP with potential linear momentum p, = p perpendicular to the propagation
direction Fig. 68 b).

e Complex SP with potential linear momentum perpendicular and in propagation
direction. Fig. 68 c).

Figure 68: BSPs with light speed generated on regenerating FPs
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Fig.69 d) shows BSPs with v = ¢ generated on emitted FPs which are the neutrinos.

YV <

V<

ra
X .

Figure 69: BSPs with light speed generated on emitted FPs (neutrinos)

Note: Photons are complex particles formed by more than one BSP separated by
the distance A/2 in the direction of movement Fig. 68 ¢). BSPs with transversal linear
momentum p, of a complex particle form pairs with opposed transversal directions and
give the complex SP the character of a wave. The energy associated independently with
the longitudinal or transversal linear momentum is fw. The resulting linear momentum
at each BSP is shown in Fig. 70. Considering the possibility of BSPs with potential

I

linear momentum p, = pe opposed to the propagation direction, the wave character

may also be generated in longitudinal direction.
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Up/Bsp : UP/BSP . UP/BSP : UP/BSP
A2 a2 A2 ' A2

ﬁ/
o Ruhende probe UP

Resting probe BSP

dH, poc rotidﬁn
dt

Figure 70: Linear momentum p on a probe BSP generated by a
basic subatomic particle with v = ¢ (GP=FP)
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12 Induction between a moving and a probe BSP.

In the present approach the energy of a BSP is distributed in space around the radius
of the BSP. The carriers of the energy are the angular momentums of FPs that are
continuously emitted, and regenerate the BSP. At a free moving BSP each angular
momentum of a FP is balanced by an other angular momentum of a FP of the same
BSP. Opposed transversal angular momentums (dH, and —dH, in Fig. 71) from
two FPs that regenerate the BSP produce the linear momentum p of the BSP. If
a second static probe BSP, appropriates with its regenerating angular momentums
(dH,,) angular momentums (dH,,) from FPs of the first BSP according postulate 3,
angular momentums that built a rotor different from zero in the direction of the second
BSP, generating dp;,, the first BSP loses energy and its linear momentum changes
to p — dp;. The angular momentums appropriated at point P by the probe BSP,
generating the linear momentum dp;, are missing now at the first BSP to compensate
the angular momentums at the symmetric point P’. The linear momentums at the
two symmetric points are therefore equal and opposed d'p; = —dp;, because of the

symmetry of the energy distribution function dk(m — ) = dk(6).

AZ

dp,
P /

Figure 71: Linear momentum balance between static and moving BSPs

As the closed linear integral ¢ dH,, dl generates the linear momentum p of a BSP, the
orientation of the field dH,, (right screw in the direction of the velocity) is independent
of the sign of the BSP, sign that is defined by A
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13 Conventions introduced for BSPs.

Fig. 72 shows the convention used for the two types of electrons and positrons intro-
duced.

The accelerating positron emits FPs with high speed v. = v, ~ oo and positive
longitudinal angular momentum .J,* (co+) and is regenerated by FPs with low speed
v, = vy = ¢ and negative longitudinal angular momentum J,~ (c—).

The decelerating electron emits FPs with low speed v. = v; = ¢ and negative
longitudinal angular momentum J,~ (c—) and is regenerated by FPs with high speed

v, = v, &~ oo and positive longitudinal angular momentum J,* (co+).

Accelerating BSP
v, acc” v, v, acc” v,
J = J -
o o
+) )
Positive BSP Negative BSP
Decelerating BSP
v, dec v, v, S+ dec 7,
J. - g -
o) ‘ o ‘
) )
Positive BSP Negative BSP

Figure 72: Conventions for BSPs

FPs emitted by BSPs are the regenerating FPs for other BSPs as follows:

e emitted FPs of the acct regenerate the dec™
e emitted FPs of the acc™ regenerate the dec™
e emitted FPs of the dect regenerate the acc™

e emitted FPs of the dec™ regenerate the acct

163



FPs of the same speed, direction and opposed angular momentum compensate each

other so that the following compensation of BSPs results:

e acc™ compensates acc”

e dec™ compensates dec™

Protons and neutrons can be seen as composed of electrons and positrons except
for the binding energy.

We have the following possible types of protons, anti-protons and neutrons:

e dect/acc™ — proton with nt =919 and n~ =918
e acct /dec™ — proton with nt =919 and n~ =918
e dec” Jacc™ — anti — proton with n~ =919 and n* =918

acc™ /dect — anti — proton  with n~ =919 and nt =918

dec™ Jacc™ — neutron with nt =919 and n~ =919

acct /dec™ — neutron with nt =919 and n~ =919

The two possible types of protons are shown in Fig. 73
The two possible types of anti-protons are shown in Fig. 74

The two possible types of neutrons are shown in Fig. 75

If we overlap the two types of protons the internal FPs compensate because of the
acct [ acc™ and the dec™ / dec™ compensations, remaining only the external FPs which
have same speed, opposed angular momentum but different directions. The same we
have for the two types of anti-protons. This is important to explain nuclear magnetic

resonsnce.
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Protons

’ i/c B
. \ .
.
’ w_ wx M
)
.
1

dec” | acc™ — proton
n"=919 n =918

s - -

acc” | dec” — proton
n"=919 n =918
Legend.:
acc = accelerating, dec = decelerating
c+ = light speed with positive torque
= high speed with negative torque

Figure 73: Protons
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Antiproton

s - - "

dec” | acc” — antiproton

n =919 n" =918
b) oo—”c+

acc” | dec” — antiproton

n =919 n" =918
Legend.:
acc = accelerating, dec = decelerating
c+ = light speed with positive torque
- = high speed with negative torque
Figure 74: Anti-Protons
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Neutrons

n"=n =919

,/ 00 — o ’

dec” | acc™ —neutron
n"=n =919
Legend.:
acc = accelerating, dec = decelerating
c+ = light speed with positive torque

- = high speed with negative torque

Figure 75: Neutrons
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Atoms are composed of protons, neutrons and electrons. The energy levels of atoms
are filled by electrons with alternated spins, what corresponds in the present approach

to the two types of electrons, namely acc™ and dec™.

Fig. 76 shows the Hydrogen and the Helium atoms. Each type of level electron
interacts only with that type of proton in the nucleus that can deliver the right FPs
for its regeneration, what requires that nuclei of atoms are filled with alternate types

of protons in the Mendelejew periodic table , namely acctdec™ and dect/ace™.

Fig. 77 shows neutrinos and photons.

Neutrinos are pairs of FPs with opposed angular momenta which carry a potential
linear momentum. The linear momentum can be oriented in all directions relative to
the direction of movement of the neutrino. On Fig. 77 longitudinal and transversal
oriented neutrinos are shown.

A photon is a sequence of transversal or longitudinal oriented neutrinos at a distance
equal to the semi wavelength A/2. On Fig. 77 longitudinal and transversal oriented

photons are shown.
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Atoms

dec” —level
electron

Hydrogen Atom

b)

dec’ | acc™ — proton

acc” —level
electron

acc’ |/ dec” — proton
electron

Helium Atom

Figure 76: Hydrogen and Helium atoms
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Figure 77: Neutrinos and Photons
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Fig. 78 shows the difference between Fermions and Bosons at the “E&R” UFT and
the Standard Model.

SM E&R Examples

Basic:
electron, positron

Composed:
Proton, Neutron

Fermions Rest mass Focal Point

Basic:
No No Neutrino
Bosons

Rest mass Focal Point Composed:
Photon

Figure 78: Difference between Fermions and Bosons

Fig. 79 shows the difference between the two states of a Fermion at the “E&R”
UFT and the Standard Model.

SM E&R
_ + 1 acc/dec
Two states Spin o electrons or
positrons

acc=accelerated Fundamental Particles
dec=decelerated Fundamental Particles

Figure 79: Difference between Fermions and Bosons
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14 Flux density of FPs and scattering of particles.

14.1 Flux density of FPs.

At each BSP the flux density of emitted FPs is equal to the flux density of regenerating
FPs although the different speeds of the FPs.

In a complex SP formed by more than one BSP (Fig. 73), a mutual internal
regeneration between the BSPs of the complex SP exists. Part of the emitted positive
rays of FPs with J.) of the positive BSPs of the complex SP regenerate the negative
BSPs of the complex SP, and part of the emitted negative rays of FPs with J.7) of
the negative BSPs regenerate the positive BSPs. The other part of the emitted and
regenerating rays of FPs respectivelly radiate into space and regenerate from space.

At a complex SP with equal number of positive and negative BSPs Fig. 75 the flux
density of FPs radiated into space with positive angular momenta is equal to the flux
density of FPs radiated into space with negative angular momenta. The same is valid
for the flux density of regenerating FPs.

At a complex SP with different number of positive and negative BSPs Fig. 73 the
flux density of FPs radiated into space with positive angular momenta is not equal
to the flux density of FPs radiated into space with negative angular momenta. If the
complex SP has more positive BSPs in the nucleous, the flux density of FPs radiated
into space with positive angular momenta is bigger than the flux density of FPs radiated

into space with negative angular momenta and vice versa.

14.2 Scattering of particles.

Elastic scattering.

Elastic scattering we have when the scattering partners conserve their identity. No
photons, neutrinos, electrons, positrons, protons, neutrons are emitted.

There are two types of elastic scatterings according the smallest scattering distance
ds that is reached between the scattering partners.

"Electromagnetic” scatering we have when the smallest scattering distance d is
in the fifth region of the linear momentum curve py,; of Fig.65 where the Coulomb
force is valid. Electromagnetic scattering is characterized by the inverse square distance
force between particles.

"Mechanical” scatering we have when the smallest scattering distance d; is in the
fourth region of Fig.65. Mechanical scattering is characterized by the combination of
inverse square distance and inverse distance forces between particles.

Plastic or destructive scattering.

Plastic scattering we have when the identity of the scattering partners is modified
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and photons, neutrinos, electrons, positrons, protons or neutrons are emitted.

In plastic or destructive scattering the smallest scattering distance ds enters the
third and second region of the linear momentum curve pg,; of Fig.65.

The internal distribution of the BSPs is modified and the acceleration disturbs the
internal mutual regeneration between the BSPs. The angular momenta of each BSP
of the scattering partners interact heavily, and new basic configurations of angular
momenta are generated, configurations that are balanced or unbalanced (stable or
unstable).

In today’s point-like representation the energy of a BSP is concentrated at a point
and scattering with a second BSP requires the emission of a particle (gauge boson) to
overcome the distance to the second BSP which then absorbs the particle. The energy
violation that results in the rest frame is restricted in time through the uncertainty
principle and the maximum distance is calculated assigning a mass to the interchanged
particle (Feynman diagrams).

Conclusion: In the present approach the emission of FPs by BSPs is continuous
and not restricted to the instant particles are scattered. In the rest frame of the scat-
tering partners no energy violation occurs. When particles are destructively scattered,
during a transition time the angular momenta of all their FPs interact heavily according
to the three interaction postulates defined in chapter 2.2 and new basic arrangements
of angular momenta are produced, resulting in balanced and unbalanced configurations
of angular momenta that are stable or unstable, configurations of quarks, hadrons, lep-
tons and photons. The interacting particles (force carriers) for all types of interactions
(electromagnetic, strong, weak, gravitation) are the FPs with their longitudinal and
transversal angular momenta.

The concept is shown in Fig. 80

Note: The proposed theory considers elementary particles those which are sta-
ble as free particles or as part of composed particles like the electron, positron, neutron,
proton, neutrino, photon, nuclei of atoms. All particles with a short life time (tran-
sitory particles) are not elementary particles and are produced at collisions. With
increasing collision energies more and more transitory particles of higher energies can

be produced without adding new substantial information to the theory.
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Clasification of particles based on
Basic (simple) or Complex (composed)

Elementary particles

Electron *
Free stabel
Neutrino **
BSP
Stabel in Positron *
configurations
Proton *
Stabel
Photon ***
Fundamental
particles
(FPs)
Stabel in
configurations | Neutron *
CSP All other particles with antiparticles
Leptons except electrons
and neutrinos
Unstabel Hadrons except protons
and neutrons
Bosons except photons
Legend

BSP =Basic Subatomic Particles
CSP=Complex Subatomic Particles (composed of BSP)

* Focal point of rays of FPs
** Pair of FPs with opposed angular momenta

*** Sequence of pairs of FPs with opposed angular momenta

Figure 80: Clasification of particles based on stability
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Clasification of particles based
on regeneration or Focal Point

Electron acc
Simple desc
Positron :CC
Particles esc
withFocal acc
Point and Proton
regeneration desc
acc
Composed i
P Antipropon desc
acc
Neutron
desc
. _ v, =c
Particles Simple Neutrino [ _
without Focal k
Point and no
. v, =c¢C
regeneration | Composed | Photon
v, ~ 00

Legend:

acc = accelerating Focal Points from v, =c¢ to Vv, ®®
desc= descelerating Focal Points from v, ¥ to v, =c¢

v, =low speed

V;, = high speed
Mediating particles like photons, gluons, gravitons, W / Z bosons
are not reuqired because of the definition of particles as dynamic
configurations of Fundamental Particles that move with v, =¢
or v, ~ « relative to the Focal Point or ist emitter.

All other particles are combinations with repetitions of these
particles with very short life time.

Figure 81: Clasification of particles based on regeneration
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14.2.1 Feynman diagram.

The proposed approach postulates that subatomic particles (electrons and positrons)
are focal points of rays of FPs that move from infinite to infinite with light and infinite
speed relative to the focal point. The forces between the subatomic particles are
generated by the interactions of the angular momenta of their FPs or dH fields, and
not by the exchanges of particles as the standard model teaches.

An analysis of the decay of radioactive nuclei shows that there is no violation of
conservation of energy. Feynmans flaw consists in assuming that electrons and positrons

are not stable particles and can decay.

Y
(E,;p,)
(E,;0)

(E,;p,)

Figure 82: Feynman diagram

The concept is shown in Fig. 82.

Note: For the following analysis the expression (E, ; p,) in Fig. 82, is replaced by
(B 5 pp).

In the rest frame of the incident particle we have that

(Eo ) O) — (Ek: ; pp) + (E’y ; pv) (656)
By =\/E ?+ E2 E,=p,c E, =p,c (657)

with
Pp = —Dy E, = Ev (658)

AE =Ey+E,—E,=/E)?+E}+E, - E, (659)

For AE =0 we get
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E,=+\/E:-2E,E,=+/E2-2FE,E, (660)
For stable BSPs like the electron and the positron which don’t decay by radiation
E,=E,=0and E, = E,.
For CSPs like heavy nuclei that decay by radiation E, > 0 and EO/ < FE,.

The same analysis is valid for nuclei that radiate «, # and v particles. The radiated

energy goes always in detriment of the rest mass E, of the nuclei. No violation of
conservation of energy occurs.
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15 Bending of the trajectory of a BSP.

In this section the equations for the quantified bending momentum for BSP’s that move

with v # ¢ are deduced.

A BSP that moves with the speed v relatively far from matter does not exchanges
linear momentum with the positive and negative BSP’s that form the matter.

If the distance to the matter is reduced, linear momentums are exchanged with
the BSP’s of the matter, bending the trajectory of the moving BSP. As the BSP’s
forming matter are quantified, also the bending trajectories of the moving BSP’s are
quantified. Responsible for bending are the Coulomb, the Ampere and the induced

forces. Basically we have to analyze for BSP with v # ¢

e Coulomb bending (sec. 15.2)
e Ampere bending (sec. 15.3)

e Induction bending (sec. 15.4)
The basic forms of bending are:

1. Bending at a free target edge
2. Bending through a target slit

3. Bending through a double target slit

15.1 General considerations.

When a BSP is bent the bending momentum p, = F, At is quantized. The concept is
shown in Fig. 83.

D;
— e = L .

Figure 83: Bending of BSPs
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The quantized bending of BSPs are indirectly observed through the bending pat-
terns generated in diffraction experiments. Sharp patterns are only generated if the
bending distance 74, is well defined and equal for all BSPs that are bent. This condition
is fulfilled when electrons have the right energy when they pass between two atoms of
a crystal. As the radius of a BSP is a function of the energy of the BSP, each target

defines with its inter-atomic distance the energy a BSP must have to be properly bent.
The concept is shown in Fig. 84.

vie

d,

| -
=
-
I ~ n
-
£

-

| -

Moving BSP o _l_ ‘

Graphite cristal

Figure 84: Relation between interatomic distance d4 and
radius r,/r,, of moving BSP.

The vectorial relation between the bending momentum py, the input momentum p;

and the output momentum p, is shown in Fig. 85.

Y

—

ﬁbx pax ﬁi X
T e —
5, |y — |3
"V P ’

P =D, — Dy, Py, =P,
Figure 85: Vector diagram for the bending of particles.

For small bending angles 1 the bending momentum p, is nearly orthogonal to the
input momentum p; and we can write that
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tann = —% ~ (661)

15.2 Coulomb bending.

In sec. 4.2 we have derived the equation for the force between two static BSPs which

18

Plmazx P2maz
/ / | sin® (@1 — @2)| dipa dy (662)
with
Ky = - iy ¢ = 1104516 - 102 | R (663)
F — 4 K 1 2 — 1. 82

For d > r, we get the Coulomb law with [ [, . = = 2.088768 for the double
integral.

We adapt now the equation for the bending analyses where the distance r between
the moving and static BSPs is variable with the angle ¢ between the speed v, and the
distance r. The length from the static BSP perpendicular to the direction of the speed
vy we designate with r4. We assume that the speed vy << ¢ to allow the use of the

static Coulomb law. We get

1 a
Fy=Kp — ith Kpr=—— N m? 664
2 F TQ //Coulomb w F 4 K e [ " ] ( )

with rsin p = r,; we get

1
F = Kp —sin®p / / (665)
Ty Coulomb

We build now the average of F; for the BSP moving from —oo to + oo.

_ 1 K
ngKF—Q// / sin gpdgo—z—F// (666)
Tq Coulomb J p=0 Coulomb

The force F, acts during the time A"t = A"l/vy where A"l is a constant acting
distance for all BSPs independent of the speed wvs.

The total bending moment is

K 1
= A"t = u —F // A"l = constant (667)
8 Td Coulomb v2

The bending equation is
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tann = p_mKe // (668)
Di 8 rd Coulomb U2 pz

15.3 Ampere bending (Bragg law).

15.3.1 Ampere bending deduced from the equation for two infinite parallel

currents of BSPs.

From sec. 4.11 we have that the momentum dp generated between two moving BSPs

due to the interaction of their transversal angular momentum is

/ dHn1 ny X / dHn2 Mo

1 2

dp =

% (669)

The BSPs that interact now trough their transversal angular momentum are the
moving BSP and the parallel reintegrating BSP of a nucleon described in sec. 17.3.
The concept is shown in Fig. 86

m, —m; =Am,

Nucleus with BSPs
v

. . _ B
Reintegrating BSP—» e T N ‘dA m = Am, —Am,
5 p

p; : L
—— | o
Moving BSP
Nucleus with BSPs

+ I
m, —m, =Am,

Figure 86: Bending of BSPs

The deduction of the Bragg equation is similar to the deduction of the force density

of sec. 4.11 with the following variable transformations:
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r=uvt Az =uvA't (670)

and integrating then the time from t = —oo to t = 4-00.
With these transformations we arrive to the same eq. (281) of sec. 4.11

for the total force density

F b 2 [m [m V2maz Mmaz in2 .
v o — / —sm. (n .72) dy1 dye (671)
Al c At 64m d . o a/siny siny,
with [ fAmpem = 5.8731.
The concept is shown in Fig. 87
Vi > Reintegrating BSP
Ax =2r,
X
__>
Figure 87: Geometric relations for single moving BSPs.
It is also for v < ¢
N, 1
_ e I, = At = K r? =F Ayt 2
Pe=R, =5 - m=pmuv o e P o (672)
We get for the force
b 5.8731
Vo Vi (673)

T ANt Gdc d

We have defined a density p, of BSPs for the current so that one BSP follows

immediately the next without space between them. As we want the force between one
pair of BSPs of the two parallel currents we take Al = 2 r,.

The interaction between the two parallel BSPs takes place along a distance A"l =

vy A"t giving a total bending momentum p, = F A”t. With all that we get

b 5.8731 m U1 "
— A 4
2Kr, 64c d : (674)

Db
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which is independent of the speed vy. In sec. 17.1 the speed of a reintegrating BSP
is deduced giving v; = k ¢ with k = 7.4315-1072. We get
b 58731 mkc
= Al

Py 2Kr, 64c d (675)

If we now write the bending equation with the help of tann = 2siné for small n

and with 2 d = d4 we get

(676)

sinf =

Dy 58731bmuvy , » h
=l —A n
2 p; 64cKr,h 2p;da

To get the Bragg law the expression between brackets must be constant and equal

to the unit what gives for the constant interaction distance A”I

" 64CKT h
Al= °
l 58731bmkc

We get for the bending momentum and force

=8.9357-1077 m (677)

h 7 1 h 1nkE,

= —nNn = — = —

b=, "TodAt 2 d

The bending force is quantized in energy quanta equal to the rest energy E, of a

BSP.

Conclusion: We have derived the Bragg equation without the concept of particle-

(678)

wave introduced by de Broglie. Numerical results obtained using the quantized ir-
radiated energy instead of the particle-wave are equivalent, different is the physical

interpretation of the underlying phenomenon.

15.3.2 Ampere bending deduced from two parallel moving BSPs.

We start with the equation for one BSP

00 00 1 . . d
/ dE, = / E,drk == FE, To sin ¢ dy d (679)
r r 2 Ty 2

From Fig. 39 with ¢ = ¥ we get h = r,. sin ¢ resulting

% 1 d
/ dE, = 5 E, % sin? o di % (680)

We now pass to the dH,, field taking the square root of the energy according the
Note for the Ampere law from sec. 4.11 and get

/ H "o gin? dgo — (681)

The equation gives the cumulated dH field for the different angles ¢ of the moving
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BSP to the distance h. To get all contributions at the distance h of the dH field for
all positions the moving BSP takes during its path, we must integrate from ¢ = 0 to

@ = 2m.

Y To ro dy
dH, H d —:—H dH,(h 2
[ =g [ [ sntede 1= T gl = amm 6

Now we build the cross product of the dH,,(h) (see Fig. 41) and get

o d o dvya ,_
A, (h1) % d,( Hm «/2 211 . 1/22 7 (7 x fig) (683)

For the differential linear momentum we get

r,
dp— — 0

b 64 c AV hl hg

With VE, = H,, = v/m v and |fi; X Tig| = sin(y; — 7o) we get

To /My v/muy sin?(y; — 7o)
64 c d V/siny; sin s

For the momentum we get

Hn1 Hn2 d’yl d’yg |n1 X TLQ' (684)

dp =

dyy drys (685)

o T V1 Uy
= 686
P=61c d / /Amp (686)
and for the force
P To m U1 Uy
F = = 687
At 64c Ayt d //Ampem (687)
The force acts during the path length A"l = vy A"t giving the total bending mo-
mentum
" mk A"l
=FAt=
b 64cKr, d //Ampere (688)
With 2d = dy, v1 = k ¢ and sinf =
. Do 2mk ” h
H = = Al
Y (64 Kryh / /Amper) 2 pi da (689)

Comparing with the Bragg equation the expression in brackets must be equal to
the unit. With [ fAmpem = 5.8731 and k = 7.4315 - 1072 we get
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A//l _ 64 K To h
58731 mk 2
The difference to the path length of the previous section is due to the factor 2/b
with b = 0.25.

=1.11697-107° m (690)

15.4 Induction bending of a BSP.

The induction bending is based on postulate 8 and described by eq. (394) which has
a term with H,, for constant speed v and a term with dH,,/dt for variable speed v.
d o

2 am, =
dt /.,

d To . _ To . _
E[Hn] . sing dp 5, — Hy,v 3 sitlp cosy dy 5,

N | —

r

The bending is analyzed for constant speed v.

a) Bending with v < c.

When a BSP passes near a sharp matter edge with the speed v the following forces
are induced on the BSP’s of the matter edge, caused by the longitudinal d H, and
transversal d' H,, fields.

d F,=d F,, + d F, (691)
with
‘= 1 d [ -
d F;, = . /My, 7o, TOL pr . d H, (692)
and
Q'F = A e (693)
i = g /My To, TO i | s

For v < ¢ and constant speed we have with eq. (394) and d 'H,, = s=dH, that

d (e}

' = 1 o
pm g d H, =— Dy \/EUQZ:—E sing cosp n (694)

We neglect the influence of d’H, because our interest is on the induced force in the
7, direction.
With the already introduced transformations (see Fig. 58)
O=m—¢ sinf = sin @ cosf = —cos df = —dyp (695)

and
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C.=C e +C. e, +C, e and &y =1 (696)

v

we get

Olf_ 017 _d Ood/ﬁ_ 1 27’0 . 0 97 C(/7_
. € =10 7eﬁ,—d—t i n= oo m v ﬁsm cost e, g €9 =10

(697)

Because of the small distances r, between the moving BSP and the BSP’s of the

sharp edge we can neglect the time differences of the emitted fundamental particles
and calculate without considering retardation.

We get for the rotor

iy 1
rot C, = 5o Vm v? r_03 [2 cos®0 —sin*6] e, + 0-¢, (698)
m r

T

1 T
— /m v? —g sin @ cos &y
2m T
When the particle reaches the closest position to the matter edge, n induction bursts
will occur each lasting At = K r, r,, seconds, between the moving BSP and the BSP’s

of the matter edge. The concept is shown in Fig. 88.

Figure 88: Quantification of the bending trajectory of a basic subatomic particle
at a free matter edge.

The induced force is
/= 1 _,
d F;,, = rpe My 7o, Tt C,, (699)
s
For r,. =~ ry we have that § ~ 7/2 and we get for the induced force
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/= 1

2
v
d F, = 67 /oy, /m Top To % (700)

The induced bending momentum d'p, we get with the elementary time At =

Ko, 1o
: ' = 1 0 o . U
dp,=dF, At= 2,/mp\/ﬁropr0K—3 (701)
167 ry
The total bending momentum is
_ ’_ "o KW 2 2 U2
= | dp=K dpbzm,/mp\/ﬁroprol(ﬁ (702)
o d

with K" an equalization constant to be determined trough experimental data.

The bending angle is

_ Pa, v K y o K 07 T
Smn:p_aNE: W./mp vmr, rogr_f; for <15 (703)
The radius r, of a BSP is defined by
h h h
po= e R (704)

with i ¢ = 3.161529299 10726 [.J m).

The bending equation gives the force on the probe BSP at the bending edge. As
velocity is relativ, the same force actuates on the moving BSP but with opposed sign.

Because of the discrete number of BSPs in the matter edge the resulting momentum
is quantified and thus the corresponding bending angle 7, .

With a constant speed v the moving BSP and the static BSPs of the edge change
linear momentum resulting in a bending angle 7;,

sinm;, & n;, X L) (705)

with ry4, the distance between the moving BSP and the BSPs of the edge that

exchanges linear momentum, and k; the number of BSP’s of the edge that exchange
linear momentum.

The bending due to the induced force is always in the same direction independent
of the sign (electron or positron) of the BSPs that interchanges linear momentum. The
two BSP’s always repel each other so that the bending of the moving BSP is always
away from the bending edge.

b) Bending with relativistic v.
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From sec. 7.1.2 and eq. (394) and the deductions made at b) for Av < ¢ we get

for the time differentiation of the transversal field

d [ - o
pr alHn:—\/Epvr—2 sinp cosp dp n (706)
Tr TT

For r, ~ ry we have that § ~ 7/2 and we get for the induced force

/= 1 v
d F, = 62 Vg Ep o, To T_f} (707)

With the elementary time At = K r,, r, we get the induced bending momentum

’_ /= 1 v
dpy=d Fy At = 25/, VE, 1, TEKE (708)
The total bending momentum is

"

’ K v
pb:/dpb: m\/ﬁp\/@,ripri[(?ﬂ—?’ (709)
o d

with K an equalization constant to be determined trough experimental data.

The bending angle is

gy Pt K
T e T 16m2

K v s
Vmy \/Eprzprzgr—s for n<1—0 (710)

15.5 Bending schemas for BSPs with v # c.

1) At a free target edge.

The bending of BSPs with v # ¢ is mainly due to the Ampere force which is inverse
proportional to the distance d, while the Coulomb bending is inverse to d?, and the
induction bending is inverse to d3. The bending at a free matter edge is shown in
Fig. 89. To the distance r4, corresponds the bending angle 7; and to the distance ry,
the smaller bending angle n;. BSP’s designated with the index 74" pass through the
interatomic spaces of the bending matter. If the radii of the BSPs are comparable
with the interatomic distances, the distance r,4, is well defined and equal for all BSPs
and the bending is therefore quantized producing bright and dark patterns. BSP’s
designated with the index ”j” have no defined bending distance and are arbitrarily

bend not producing bright and dark patterns.
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Figure 89: Quantification of the bending trajectories of basic subatomic particles
with v # ¢ at a free metal edge.

2) At a target slit.

The bending of BSP with v # ¢ at a metal slit is shown in Fig. 90.

The bending pattern observed is a superposition of the bending patterns produced
by two bending free matter edges. To get well defined bright and dark patterns, the
distance L to the screen must be much greater compared with the distance b between
the bending edges.

As particles with v # ¢ have no wave character and therefore no interference is
possible, it is not possible to calculate the distance b.

If neutral complex particles (neutrons) are used instead of negative BSP’s (elec-
trons), the discrete bending has its origin in that during the way through the crystal
some BSP’s that form the neutral complex particle change linear momentum with the
BSP’s of the bending edge.

3) At a double slit, grating or crystal.

The bending of BSP’s with v # ¢ at a double slit, a grating or a crystal is the
superposition of the bending of BSP’s at single matter edges.
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Figure 90: Quantification of the bending trajectories of basic subatomic particles
with v # ¢ (electron) at a metal slit.

16 Interaction of complex BSPs with v = ¢ (pho-
tons) with regenerating and emitted FPs from

BSPs of matter.

16.1 General considerations.

A sequence of BSPs with light speed (photon) is not bent when it interacts with
regenerating or emitted fundamental particles of BSPs of matter. They are absorbed

by the regenerating FPs of BSPs of the matter and

e partly passed to the emitted FPs from the BSPs of matter at the reflection level.
(reflected).

e and partly re-emitted by the BSPs of the matter (refracted).

The concept is shown in Fig. 91.
Fig. 91 shows a piece of matter with its two parallel refraction levels and two BSPs

a and b with their regenerating and emitted rays of FPs.
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Figure 91: Light reflection and refracction

From left to right a photon is shown as a sequence of opposed dH,, (dots and crosses)
fields perpendicular to the drawing plane. Each pair of opposed dH,, fields is a potential
linear momentum perpendicular to the plain that contains the opposed pair. At the
reflection level part of the energy of each pair of dH,, field is reflected and the rest of
the energy is refracted at the refraction level 1. The reflection follows postulate 8 of
interactions between FPs from sec. 2.2 passing part of the energy of pairs of opposed
dH,, from regenerating rays of FPs to rays of emitted FPs. The separation between
reflection level and refraction level 1 shown in the figure has only a didactic purpose to
emphasize the interaction between incoming FPs of the light ray and the FPs of the
emitted ray of BSP a.

At the refraction level each dH,, pair is absorbed by a BSP of matter transforming
the potential linear momentum in an actually one. The now moving BSP is stopped
after a certain interval because of its bindings with the other BSPs of the matter and
emits the previously absorbed dH,, pair with light speed.

The present approach is a emission theory where FPs are emitted by BSPs with
light speed relative to a coordinate system fixed to the BSPs. Light that arrives to

matter with speed ¢ 4 u is reflected and refracted at the refraction level 2 with light
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speed. The reduced speed of the light inside matter is due to the time needed for

absorbtion and re-emission when moving from BSP to BSP.

16.2 Splitting of BSPs with v = c.

At Fig. 91 the separation between reflection level and refraction level 1 shows first

the splitting of the light ray followed by the refraction to comply with conservation

of potential linear momentum. An isolated splitting of the light ray is also possible

without the need of a subsequent refraction as the following Fig. 92 shows.

The ray that passes between the two BSP with v = 0 carries two FPs with opposed

angular momenta .J,, (dot and cross) which give the potential linear momentum p,,.

The two BSPs with v = 0 emit FPs with longitudinal angular momenta J; which are

not paired and are not opposed to give a potential linear momentum.

At point O, where the three rays cross, their angular momenta interact according

postulate 8 resulting the angular momenta J, and J, . Both types of angular momenta

have an opposed pair giving respectively potential linear momenta p’n and p; on the

two rays. Longitudinal angular momenta .J, remain at each ray contributing to the

balance of linear momentum and energy.
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Figure 92: Splitting of a BSP with light speed.

Fig. 93 shows the geometric relations for the balance of linear momentum.

have assumed, that the splitting is symmetric to make calculations easier.
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Figure 93: Geometric relations for the splitting of a BSP with light speed.

Fig. 94 shows the splitting of a train of alternated linear momentum p,.
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Figure 94: Splitting of a train of BSP with light speed.

The train of linear momenta 10;1 interfere as shown in Fig. 95.
We have that

1 [e.9]
dp = Sr VT o, rot/ dH (711)
m v

As a BSP with light speed is independent of the BSP that has emitted it, it is
independent of the distance r.. We define that
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/ dH =V Jv and  rotvVJv= Sy (712)
rr To

and get for the potential lineal momentum p for each pair of opposed angular

momenta

p= o Vi VT (713)

with m, the mass of the probe particle. The energy of a train of potential linear
momenta that moves with light speed (photon) is E,, = h v with h the Planck konstant.
If the train has k links we have that

Ep=hv=kJv=khv  with 1/:% (714)

16.3 Differences between bending, reflection, refraction and
splitting.

e Bending occurs between BSPs with speeds v # ¢ (with rest mass) which emit and
are regenerated by FPs. The bending is the product of the exchange of quantized
energy between the bending partners and the bending linear momenta between

them are opposed and have equal absolute value.

e Reflection occurs between BSPs with speeds v = ¢ with potential linear momenta
(pair of opposed dH,,) which don’t emit and are not regenerated by FPs. Reflec-
tion is always paired with refraction because of momentum conservation, also in

the case of total reflection.

e Refraction occurs between BSPs with v # ¢ and BSPs with v = ¢. The pairs
of opposed dH,, are absorbed by the BSPs with v # ¢ and then re-emitted.
Refraction is always paired with reflection because of momentum conservation,

also in the case of total refraction.

e Splitting occurs between BSPs with v = ¢. Because of momentum conservation

splitting requires the interaction of three BSPs with v = c.

16.4 Interference schemas for BSPs with v = c.

A BSP with light speed is formed by a pair of equal but opposed angular momenta
which, when absorbed by the regenerating FPs of a probe BSP gives it a linear momen-
tum. The possibility to transform the energy stored in opposed angular momenta to

energy stored in linear momentum is expressed with potential liner momentum. At
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a single BSP with light speed the potential linear momentum can adopt all directions
relative to the moving direction of the BSP. Single BSPs with light speed are called
neutrinos.

A train of BSPs with light speed with alternating opposed potential linear momenta
perpendicular to the moving direction is called photon. Photons interfere giving the
known interference patterns at a target edge, at a single slit and at a double slit.

The following schematic representations show how the interference patterns are

generated based on the concept of splitting of a train of BSPs with light speed.

1) At a free target edge. Fig. 95 shows a free target edge where some rays
pass between the limiting atoms of the edge and rays that pass outside the edge. As
BSPs with light speed are not bend, the rays outside the edge move without change of
direction. The two rays a and b are split according Fig. 92 and Fig. 94. The interference
patterns are generated the same way we know from standard theory. The incoming ray
is split in rays with splitting angle +7. Interference produced by splitting angles —n is
not visible because of the intensity of outside rays. The distance d4 between atoms is
given by

i, = "2 (715)

sin 7,

2) At a target with a single slit. Fig. 96 shows the bending and corresponding
interferences at a single slit. The interference pattern observed with a single slit is
simply the superposition of the interference patterns from free edges. To make them
visible certain geometric relations between the dimension of the slit and the distance

to the screen must be observed. The slit is given by the following equation:

Ax

sinny,

b:

with Ax=n A\ (716)
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Figure 95: Splitting and interference of BSPs
with v = ¢ at a free matter edge.

3) At a target with a double slit.
The interference of BSPs with v = ¢ at a double slit, a grating or a crystal is the
superposition of the two interference cases 1) and 2) previously presentsd.

The distance g between the two slits is given by

n A

sinn

g= (717)

Note: As a photon is composed of a train of BSPs with opposed potential linear
momenta, it is possible to explain the interference of a single photon at the double slit,
in that part of the train passes trough one and the other part through the other slit.

The two parts are then split in rays that interfere.

196



Figure 96: Interference of BSPs
with v = ¢ at a single slit.
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16.5 Derivation of Snell’s refraction law.

In Fig. 97 the potential linear momentum of each pair of opposed dH,, field at each

light ray is shown. The potential liner momentum is given by

1
P= gV dH, (718)

where m,, is the mass of the probe BSP.
Because of momentum conservation the linear momenta must have for ¢; = ¢, the

geometric relation shown which give the following equations.

sin(e; — €) sin(m — 2¢;)

i . 7 o = Pi —. 7 1
sin(e; + €') Po =P sin(e; +€) (719)

Pr=2D

Additionally with the energy conservation p;c = p,c+ p,c we get after some math-

ematics the Snell’s law of refraction.

/ . /
C S11 €

- (720)

c sin €;

Figure 97: Geometric relations between potential linear momenta
of reflected and refracted rays.
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16.6 Redshift of the energy of a BSP with light speed in the

presence of matter.

Fig. 98 shows a sequence of BSP with light speed with their potential linear momenta
p (photon) before and after the interaction with the ray of regenerating FPs of the
BSPs of matter. When the regenerating rays are approximately perpendicular to the
trajectory of the opposed dH,, (dots and crosses) fields of the photon, part of the energy
of the dH,, field is absorbed by the regenerating FPs of the ray and carried to the BSPs
of the matter. The photon doesn’t change its direction and loses energy to the BSPs of
the matter shifting its frequency to the red. The inverse process is not possible because
the BSPs of the photon (opposed dH,, fields) have no regenerating rays of FPs that
can carry energy from the BSPs of matter and shift the frequency to the violet.

Figure 98: Loss of energy of a BSP with v = ¢

The process of loss of energy is according postulate 8 which postulates that pairs of
regenerating FPs with longitudinal angular momenta from a BSP can adopt opposed
pairs of transversal angular momentum from another BSP. As photons have no regen-
erating F'Ps they can only leave pairs of transversal angular momentum to other BSPs
and lose energy. During the red shift, two adjacent opposed potential linear momenta
of the photon compensate partially by passing part of their opposed linear momenta
to the BSP of matter.

The energy exchanged between a photon and an electron is

(721)

199



The frequency shift of the photon is with E; = FE, + E

1 E A
AI/:I/Z'—I/OZE(EZ'—EO):TI) Z = Vj

where F; = h c¢/\; is the energy before the interaction, £, = h ¢/), the energy

(722)

after the interaction and Ej, the energy carried to the BSP of matter.
Light that comes from far galaxies loses energy to cosmic matter resulting in a red
shift approximately proportional to the distance between galaxy and earth (Big Bang).
Light is not bent by gravitation nor by a bending target, it is reflected and refracted
by a target.

16.6.1 Refraction and red-shift at the sun.

Fig.99 shows two light rays one passing outside the atmosphere of the sun and one
through the atmosphere. The first ray is red shifted due to regenerating FPs of matter
of the sun as explained in sec.16.6. The second ray is refracted in the direction of the
sun surface when crossing the sun atmosphere. Due to the refractions the speed in the
atmosphere is v < ¢. Red-shift is also possible at the second ray but not shown in the
drawing.

Note: Bending takes place only between BSPs with rest mass.

Regenerating FP
: \ redshift \,>% ¢

o
>

refraction

o)}

V<

BSP
(induction)

Sun
atmosphere

atmosphere

Sun

Figure 99: Refraction and red-shift at the Sun
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16.6.2 Cosmic Microwave Background radiation as gravitation noise.

Two explanations are possible:

From Fig. 98 we have learned how a photon passes energy to matter shifting
its frequency to red. The transfer of energy takes place according postulate 8 from
rays that not necessarily hit directly matter. If we put on the place of the matter
the microwave detector of the COBE satellite we see how microwave radiation from
radiating bodies that are not placed directly in front of the detector lenses can reach the
detector. What is measured at the FIRAS (Far-InfraRed Absolute Spectrophotometer),
a spectrophotometer (Spiderweb Bolometer) used to measure the spectrum of the CMB,
is the energy lost by microwave rays that pass in front of the detector lenses. The so
called Cosmic- Background Radiation is not energy that comes from microwave rays
that have their origin in the far space in a small space angle around the detector
axis. As the loss of energy from rays of photons to the microwave detector that don’t
hit directly the detector is very low, the detector must be cooled down to very low
temperatures to detect them.

A more plausible explanation for the CMB radiation is based on gravitation forces.
Gravitation also follows postulate 8, which is the foundation of the induction law.

Nuclei of atoms are composed of electrons and positrons. Atoms are formed by
nuclei and level electrons which move in orbits with quantized energies. When level
electrons pass from a higher to a lower energy level the energy difference is emitted as
gamma radiation of energy AF = hw.

At very low temperatures all level electrons are at the lowest possible energy level
and no gamma radiation exists.

Gravitation is independent of the temperature because it has its origin at the atomic
nuclei by reintegrating migrated electrons and positrons to their nuclei. The reintegra-
tion of migrated electrons and positrons to their nuclei generates momenta not only at
electrons and positrons of other nuclei, but also at level electrons of other atoms. The
gravitation momenta on the level electrons move them to a higher energy level, energy
difference that is radiated as gamma signal when the electrons return to their original
energy level.

The detectors of FIRAS, etc. are oriented to the Cosmic Background where no
radiation is generated, nevertheless microwaves are detected. The only possible source
of the measured microwaves at very low temperatures are the microwaves generated
by gravitation between the components of the satellite. It is the gravitation noise that

is detected when no thermal noise is present.
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Part V Gravitation

Deduction of the gravitation as an induction force with a Coulomb and Ampere com-

ponent. The Ampere component explains the flattening of galaxie’s rotation curve.

17 Induction between an accelerated and a static
BSPs.

We assume, that a BSPs is accelerated from v = 0 to a fraction k of the light speed
Umaz = k ¢ in the time At and returned then to its original position through an external
force in the time At — oco. We also assume that the acceleration has the direction of
the probe BSP. According to postulate 8 the induced force on the static probe BSP
is independent of the sing of the accelerated BSP and has always the direction of the
acceleration. See Fig. 101 where BSP b is accelerated in the direction of the nucleus

of neutron 1 and BSP p from neutron 2 is the probe BSP.

17.1 Induction between an accelerated and a probe BSP ex-

pressed as closed path integration over the whole space.

We start with the general dynamic equation (409) for the induced force on a static
probe BSP produced by a BSP with speed v

1 dl d [ - o0
dF, == ¢ = . 2 | qu dH 9
el 2mR Car), " / ° (723)

and the eq. (394) with n = 3,

d [ _ 1 d Ty . ~ ro .
i 5 dH, = 5 %[Hn] " sinpdps, — Hy,v r_,? sing cosp dp s, (724)
1 I dr, _
+§Hnr_r Slngodgoﬁs,y

For v = k ¢ < ¢ with k a dimensionless factor (see also sec. 4.6), we have

d d
H,=vvm and  —[H,]= & vm (725)
dt dt
and
hc dr,
ro = 5 and i 0 (726)
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We now assume in Fig. 54 that r; = 0 and that the moving BSP has a speed v = 0
but is accelerated in the direction of the probe BSP from v = 0 to v = k ¢ in the
time At over the distance Ax, and then returned to its original position in the time
At — oo by an external force. We get

d [ - keclr,

e H,= m 22T 7 2
i), dH, m A5 - sinp dp n (727)

For the static probe BSP we have

H, =cvm and %[Hsp] =0 (728)
and we get
o 1 To, .
/ dH,, = 5 ¢V T—p sin @, dy, (729)
ks p

P

We introduce this expressions in the first equation and get

kcroro, /M /My dl sin smgppd J
) Pp N

dF; = 730
4 At 2R Ty Tp (730)
With the following geometric relations already defined in sec.4.2 for the Coulomb
law
R=r, sinp R =1, sinyp, — Ty COSQ + 1y, COSp, =d (731)
we get
rery=d? ———— ¥ T (732)
[sing cos g, —sinp, cosp |2
resulting
kcrore, /m /my,
dF; = NP sin’ (¢ — @) di diy (733)

We get for the total force

k CTy Ty m m Pmazx Pp max
_ P \/_ V P / (734)
1)

i = ONYE |sin®(p — ¢p)| dip dipy

Pmin D min

where the integration limits are functions of the radii 7, and 7,, and the distance
d. For d > /r5 +r2 the integration limits are

o . 7”‘O
Omin = arcsin % Omaz = T — arcsin 7" (735)
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To
d
For d > r, the [ [ is independent of the distance d and equal

to f f[nduction = 2.4662.

kc+/m . /m
F, = sz / / with / / = 2.4662 (737)
4 K d Induction Induction

We get

. . To
©p .. = arcsin Op maw = T — arcsin 7" (736)

k
F; = 3.10447 - 1077 = N (738)

If we make F; equal to the attraction force between an electron and a positron

1q2

5T 4dre, @2

we get  k=74315-10"2 (739)

The maximum speed is thus v,,., = k ¢ = 2.22944 - 10" m/s < c.

Note: If we compare k = 7.4315 - 1072 with a = 8.7743 - 1072 from sec. 4.2 we see
that they are very close. The difference comes from sec. 4.6 where we have introduced
the equation for the induced force based on the equation for the Coulomb force. We

have eliminated the cross product |5; X S| = sin 8 from eq. (186) resulting in the

difference between f fCoulomb and f fm duction”

17.2 Induction between an accelerated and a probe BSP ex-

pressed as rotor.

We start with the induced force expressed as rotor of the d'H,, field

/= 1 d [ ,_
d F; = . /My T, TOL %/T d H, (740)

r

We make the same assumptions from sec. 17.1 that r; = 0 and that the moving
BSP has a speed v = 0 but is accelerated in the direction of the probe BSP from v = 0
to v = k' ¢ in the time At over the distance Az, and then returned to its original
position in the time At — oo by an external force. With the transformation ¢ = 7 — 60
we get

d [ kK ¢ r,

/= 1 o
ETTdH":E\/EEESHlen (741)

We build the rotor
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rot — d H,=— /m — —2 cosf 3, (742)
r

and get the force

To, To k ¢

p [
r2 At

T

1
d Fin = m V1M \/% cos 0 Sy (743)

For aligned BSPs we have that 6 = 0 and with At = K 72 we get

., 1 ke 1l _
@ Buloo = o VI VI T g T
or
d'F = 3.1886-107% —k/ 5, [N 745

If we make F; equal to the attraction force between an electron and a positron

_ 1 ¢
T dwe, d2

we get k= 7.2354 (746)

The maximum speed thus is v,,,, = k' ¢ = 2.1706 - 10° m/s > ¢, which is not
realistic, but shows, that the rotor gives a smaller value compared with the exact
space integration of the previous section. The rotor nevertheless can be used as a
more practical calculation instrument if the right proportionality factor is introduced
as follows:

Eq. (740) must be written as

= 97.3612 d [ -
F = — H 4
d F;, e /My 7o, TOL dt/r d H, (747)

T

and eq. (741) as

d oo

! 77 1 mazx o . _ .
o | dH.=—m UAt "o Ginfn with Ve = 2.22944-107 m/s  (748)
T T Ty
- 1
d'F; lo—o| = dF, =2.30706-10"% — [N 749
n 2

r

17.2.1 Fundamental moment for the generation of forces.

The calculations of the variation of the speed Av = V02 — U = Upar to generate the

Coulomb force of the previous sections, namely integration over the whole space and
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as a rotor, gave values very close to the light speed.

VUmaz = 2.22944 - 10" m/s < ¢ < v, = 2.1706 - 10° m/s (750)

Our intention now is to give the force F, the following form

dF, = dp, v, [N] with dp, = M Upmaz (751)

We are free to choose any value for the fundamental moment dp, = m v,,,, and

1
Aot

take v, = ¢. The reason is that it gives a simple relation between dp, and v, =

as shown in sec. 9.1 where we have deduced that

E.At=FE,Ajt=h or mec= —1, (752)

where h is the Planck constant.

We now define that the force dF, is the product of a fundamental momentum

dp, = M Ve, and the frequency v, at which the fundamental moment is generated.

dF, = dp, v, [N] with dp, = M Umaz (753)

and make v, = ¢ m/s. We get

1
dpo=m c=273282-10"*  and v, =8.44205-107" — [s7] (754)
r

The linear momentum dp, is the momentum generated by the transversal angular

momenta of regenerating FPs when they arrive to the focus, as shown in Fig. 100.

From
dE, =v|J,|  dE, = — 7{J [ dp—ldE (755)
n =V |Jp = 5 5 n’ = =
P 2nR p c F
with J, = h and v = v, = 1/A,t we get
Vo h —22
dp = =2.73282-107* =m c = dp, (756)
c
a simple relation between between dp, and v, = - as anticipated.

Aot
To get a moment dp, = m c the electron or positron must move with
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1
dp, =m ¢ = ——— — v=—c=2.12132-10° m/s (757)

2 V2

The fundamental force F, = dp, v, is generated with v, = 1/A,t = 1.23725 -
10%° [s7!] and gives F, = 2.51271 - 1073 N.
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The concept is shown at Fig. 100

Linear momentum out of opposed

anqular momenta.

Figure 100: Linear momentum out of opposed angular momenta.

If we now concentrate on the orbit electron with the Bohr radius a, = 5.29189 -
107 m we get from (754)

1

2
a,

vp = 8.44205- 1077 — [s7'] = 3.014576 - 10'* s7* (758)

and

1
Apt = — =3.31722-107" s >> At =8.0824-1072! s (759)
Vp

The distance between two consecutive Fundamental Particles for the Bohr radius

is
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d, =dpg = c At =9.951648 - 10°" m (760)

Note: In the previous analysis we have concentrated on region 5 of the curve Fig.
66 of sec. 10 where the Coulomb law is valid. At the region 2 we must write in (754)
that

v, o< 1? (761)

17.3 Induced gravitation force between two complex SPs.

We have defined complex subatomic particles (SPs) like the proton, neutron, etc, as
composed of positive and negative BSPs that are grouped in the zone left to the maxi-
mum of the momentum curve of Fig. 29 (See also lower part of Fig. 101). The neutron
for instance with 919 positrons and 919 electrons, neglecting the binding energy. Ac-
celerating and decelerating BSPs of Fig. 3 don’t mix in the nucleus of complex SPs.
They have different emitting and regenerating fundamental particles with different an-
gular momentums and speeds. They are in a dynamic equilibrium in the nucleus of
the complex SP.

We now show at Fig. 101 the generation of the gravitation force between two neu-
trons. If at neutron 1 a positron or electron migrates outside the zone where g = 0,
opposed momentums dp are induced at the positron or electron and the rest of the
neutron 1. The momentum dp, reintegrates the escaped positron or electron to the
nucleus of the neutron 1 generating the transversal field dH,,, whose direction is the
same for the positron or electron. If now during the reintegration process the transver-
sal field dH,, is transferred according postulate 8 to the regenerating FPs of neutron
2 with its field dH,,, the positron or electron will stop moving towards the center of
the nucleus of neutron 1, and neutron 2 will now move in the direction of neutron 1
with the momentum dp, = dpy. If to the contrary, during the reintegration process the
transversal field dH,, is not transferred to the regenerating FPs of neutron 2 with its
longitudinal field dH,,, then the opposed momentums dp, at the positron or electron
and dp, at the rest of the neutron 1 compensate. Escaped electrons and positrons are
continuously forced to reintegrate to the center of the nucleus of neutron 1. The prob-
ability that the transversal field dH,, is transferred to the regenerating FPs of neutron
2 follows the law of the inverse square distance d between the neutrons, resulting the

known gravitation force for distances d > r,, where r,, is the radius of the neutron.
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Neutron 1

Figure 101: Induced gravitation force between two neutrons.

17.4 Transmission of gravitation momentum.

The neutron is composed of n™ = 919 positrons and n~ = 919 electrons. Positrons
of the neutron provide the required regenerating FPs to electrons and vice versa. The
fields of positrons and electrons compensate and no external field of FPs exist. The
proton is composed of n™ = 919 positrons and n~ = 918 electrons. One positron of the
proton is not compensated by an electron and therefore an external field exists. The
concept is shown in Fig. 102.

For the following figures see conventions introduced for the representation of the
positron and electron in sec. 4.3.

Fig. 103 shows a neutron with one migrated BSP and the corresponding leaking
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Neutron
n"=n =919

Proton
n" =919 n =918

Figure 102: Neutron and proton

fields.
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Leaking neutron )
n"=n =919

Figure 103: Neutron with migrated BSP

Fig. 104 shows the linear momentum dp, generated by a migrated BSP when
reintegrated to the nucleus of neutron 1. Also rays (v.) followed by emitted FPs of the
migrated BSP and rays (v, and v;) followed by regenerating FPs of BSPs of neutron 2

are shown.
Migrated BSP Migr aCde BSP
O Pl e 3T 2 s
. +_+ + ‘T+ 4+
'+ dp '+dp,\ =
| Wit @_p’a s @ + 1
O tee 5
— . 0
O - :+—+7+ ‘ F +: - O
Migrated BSP Migrated BSP
Neutron 1 Neutron 2

~\ve

Figure 104: Transmission of momentum dp from neutron 1 to neutron 2
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18 The dH, field induced at a point P during rein-

tegration of a migrated BSP to its nucleus.

En electron that has migrated slowly outside the core of a neutron formed by n* = 919
positrons and n~ = 919 electrons will interact with one of the positrons of the core of
the neutron and be reintegrated to the neutron. Because of moment conservation they
will have the same moment. The moment of the positron who moves in the core of the
neutron will pass its moment to the n* = 919 positrons and now n~ = 918 electrons

so that the core will move as a unit.

P> P
Figure 105: Field dH due to reintegration of an electron to its neutron

The dH,, fields induced at a point P in space due to the moving electron and neutron

core are:

dHn1 = U1 /11 dlil dHn2 = Vg /My dlig (762)

where the sub-index 1 stands for the electron and 2 for the neutron which now has
a positive charge. The distances r; and ry to the point in space are nearly equal so

that r; = ry and dk; = dke. We also have
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. my
pP1=m1 N P2 = Mg V2 with pP1 = D2 Vg = m_ U1 (763)
2

and we get

dH,, = /L dH,,  resulting  dH,, =2.3321-10%dH,,  (764)
mo

For the analysis of the induced gravitation force and the induced current in an
superconductor only the dH,,, field generated by the reintegrating electron or positron
is relevant. The induced opposed dH,, field generated by the movement of the neutron

core can be neglected.

19 Newton gravitation force.

To calculate the gravitation force induced by the reintegration of migrated BSPs, we
need to know the number of migrated BSPs in the time At for a neutral body with
mass M.

The equation (737) for the induced gravitation force generated by one reinte-

grated electron or positron is

d kc/m . /m
F=2L kevim .y, // with // = 24662  (765)
At 4 K d 2 Induction Induction

with m the mass of the reintegrating BSP, m,, the mass of the resting BSP, k =
7.4315-1072. It is also

At=K7r> 1r,=38590-10""% m  and K =54274-10* s/m*  (766)

The direction of the force F; on BSP p of neutron 2 in Fig. 104 is independent of
the sign of the BSPs and is always oriented in de direction of the reintegrating BSP b
of neutron 1.

Fig. 106 shows reintegrating BSPs a and d at Neutron 1 that transmit respectively
opposed momenta p, and p, to neutron 2. Because of the grater distance from neutron
2 of BSP a compared with BSP d, the probability for BSP d to transmit his momentum
is grater than the probability for BSP a. Momenta are quantized and have all equal
absolute value independent if transmitted or not. The result computed over a mass M
gives a net number of transmitted momentum to neutron 2 in the direction of neutron

1, what explains the attraction between neutral masses.
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Neutron 2

Neutron 1

. d .

Figure 106: Net momentum transmitted from neutron 1 to neutron 2

For two bodies with masses M; and M, and where the number of reintegrated BSPs

in the time At is respectively Ag, and Ag, it must be

M, M. 3
L2 with G =6.6726-10"1 (767)

Fi e 86 =G d? kg s2

As the direction of the force F; is the same for reintegrating electrons A, and

positrons Af it is

Ag = [Ag| + |Af] (768)
We get that
4 K My M,
Ag, Ag, =G 769
@ @ mkc f flnduction ( )
or

Ag, Ag, = 2.8922 - 10'7 My My = ~2 My M, (770)

The number of migrated BSPs in the time At for a neutral body with mass M is
thus

Ac=vM  with  ~5=>5.3779-10% kg™* (771)
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Calculation example: The number of migrated BSPs that are reintegrated at
the sun and the earth in the time At are respectively, with M, = 1.9891 - 10%° kg and
M; =5.9736 - 10** kg

Ag, = 1.0697-10%  and Ay =3.2125-10% (772)

The power exchanged between two masses due to gravitation is

E Em c?
Pi=Fc=-= LA 773
¢ ¢ At 4 K d2 e //]nduktwn ( )

The power exchanged between the sun and the earth is, with dgy = 1.49476-10'" m

My M;

Po=Fsc= G i c=1.0646 - 10°" J/s (774)

20 Ampere gravitation force.

In the previous sections we have seen that the induced gravitation force is due to
the reintegration of migrated BSPs in the direction d of the two gravitating bodies
(longitudinal reintegration). When a BSP is reintegrated to a neutron, the two BSPs
of different signs that interact, produce an equivalent current in the direction of the

positive BSP as shown in Fig. 107.

Neutron 1 Neutron 2

Figure 107: Resulting current due to reintegration of migrated BSPs

As the numbers of positive and negative BSPs that migrate in one direction at one

neutron are equal, no average current should exists in that direction in the time At. It
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18

Ap=AL+AL=0 (775)

We now assume that because of the power exchange (773) between the two neutrons,
a synchronization between the reintegration of BSPs of equal sign in the direction
orthogonal to the axis defined by the two neutrons is generated, resulting in parallel
currents of equal sign that generate an attracting force between the neutrons. The
synchronization is generated by the relative movements between the gravitating bodies
and is zero between static bodies. Thus the total attracting force between the two
neutrons is produced first by the induced (Newton) force and second by the currents

of reintegrating BSPs (Ampere).

My M, My M,

Fr=Fqs+ Fg with Fe=G 72 and Fr=R

(776)

To derive an equation we start with the following equation (281) derived for the

total force density due to Ampere interaction.

F b 2 Im Im V2mazx Ymaz 102 —
,ro 1d 2 / Sin (’yl 72) df}/l d'72 (777>
72

N At 64 m o V/siny; sin s

min

with [ [, =58731.

It is also for v < ¢
N, 1
Pr= Az ~ 2 To
We have defined a density p, of BSPs for the current so that one BSP follows

immediately the next without space between them. As we want the force between one

I,=pmuv At =K r? ]m:E]q (778)
q

pair of BSPs of the two parallel currents we take Al = 2 r,.
For one reintegrating BSP it is p = 1. The current generated by one reintegrating
BSP is

Iy, =im=pmuv,=pmkc with U =k c k=74315-10"2  (779)

1

We get for the force between one transversal reintegrating BSP at the body with
mass M, and one longitudinal reintegrating BSP at M moving parallel with the speed
V2
b 273

V2 —50 U2
— =272 -1 — N
Ad o’ mk 086107 — (780)

dFr = 58731
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with I, = io = pm vs.

The concept is shown in Fig. 108.

Transverasl to "d"
reintegrating

BSP BSP

reintegrating
longitudinally to "d"

d

Figure 108: Ampere gravitation

Note: The sign that takes the current 7,, of the reintegrating BSP at the body
with mass M; which interacts with the current s, is a function of the direction of the
magnetic poles of M;. The Ampere gravitation force Fg is therefore an attraction or
a repulsion force depending on the relative directions of the magnetic poles of M; and
the speed vs.

In sec. 19 we have derived the mass density v of reintegrating BSPs. At Fig. 106
we have seen that half of the longotudinal reintegrating BSPs of a neutron 1 induce
momenta on neutron 2 in one direction while the other half of longitudinal reintegrating
BSPs induce momenta in the opposed direction on neutron 2. In Fig. 108 we see,
that all longitudinal reintegrating BSPs at M, generate a current component i, in
the direction of the speed v,. This means that we have to take for the density vy of
reintegrating BSPs for the Ampere gravitation force approximately twice the value of

the density v4 of the Newton gravitation force
YA~ 29 =2-53779-10° = 1.07558 - 10° kg ' (781)

resulting for the total Ampere gravitation force between M; and M,

b 273
At 64

M1 M2 Ml M2

Fr = 5.8731 = 2.5551 - 10732 v,

PP mk vy vA N (782)
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where

My M,
d

The total gravitation force gives

FR:R

with R = 2.5551-107% vy = R(vy) (783)
Fr=Fg+ Fp= {ﬁ + E] M, M, (784)
The concept is shown in Fig. 109.

3
G=6672-10"""_

B 2

F, "
— G
FR FGOC? R(‘}2)=2.5551.]0_32v2 Nrnz
- \\ kg
\\\ 21 1
dgal:2.6154.]0 o
V)
R
| d

| I I
subgalactic d g galactic

Figure 109: Gravitation forces at sub-galactic and galactic distances.

20.1 Flattening of galaxies’ rotation curve.

For galactic distances the Ampere gravitation force Fr predominates over the induced

gravitation force F and we can write eq. (784) as
R
FT%FR:EMI M2 (785)

The equation for the centrifugal force of a body with mass Ms is

2
v

F. = M, %” with vy the tangential speed (786)

For steady state mode the centrifugal force F,. must equal the gravitation force Fr.

For our case it is

F,= M, - = Frp ~ Fp = — M, M, (787)
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We get for the tangential speed

Vorp = v/ R M, constant (788)

The tangential speed v, is independent of the distance d what explains the flat-

tening of galaxies’ rotation curves.

Calculation example

In the following calculation example we assume that the transition distance dgq is
much smaller than the distance between the gravitating bodies and that the Newton
force can be neglected compared with the Ampere force.

For the Sun with vy = v, = 220 km/s and My = Mg = 2 - 10% kg and a distance
to the core of the Milky Way of d = 25 - 10'Y m we get a centrifugal force of

2
F, = M, Ugb —3872-10° N (789)
With
R(v3) = 2.5551 - 10732 v, = 5.6212- 1072 Nm/kg? (790)
and
M, M.
Fe~ R 1d : (791)

we get a Mass for the Milky Way of

1
M, =F.d =4.3-10° M 792
! R MG © (792)
and with
G 16
Fo=TFg we get dyat = = 1.1870 - 10°® m (793)

justifying our assumption for Fr &~ Fr because the distance between the Sun and
the core of the Milky Way is d > dgq.

Note: The mass of the Milky Way calculated with the Newton gravitation law
gives M, ~ 1.5 - 102 M® which is huge more than the bright matter and therefore
called dark matter. The mass calculated with the present approach corresponds to the
bright matter and there is no need to introduce virtual masses in space.

For sub-galactic distances the induced force Fy is predominant, while for galactic

distances the Ampere force Fr predominates, as shown in Fig. 109.

G

dgal = = (794)
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Note: The flattening of galaxies’ rotation curve was derived based on the assump-
tion that the gravitation force is composed of an induced component and a component
due to parallel currents generated by reintegrating BSPs and, that for galactic distances

the induced component can be neglected.

20.2 Current induced on a rotating body.

In sec. 20 we have analysed the interactions between reintegrating BSPs of two bodies
that move relative with the speed v3. Now we analyse the case of two bodies where
one of them rotates relative to the other.

The concept is shown in Fig. 110

Transverasl to "d"
reintegrating

BSP

BSP
reintegrating
longitudinally to "d"

| d
142
|d

=d1

Figure 110: Induced current I, and field dH,, on a rotating neutral body.

Comparing with Fig.108 all BSPs at the distance d; move with —vy and all BSPs
at the distance dy move with v,. Reintegrating BSPs at M, that are at the distance
dy from M; define the direction of the currents i,, at M; because they are closer than
reintegrating BSPs of M, at the distance ds. The net result is a closed loop of currents
ip at My giving the current I; which generates the transversal field dH,,. Please see

also subsection Permanent magnetism at [25.9).
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21 Electromagnetic and Gravitation emissions.

Fig. 111 shows the generation of the electromagnetic emission and the gravitation
emission.

At a) a Subatomic Particle (SP), electron or positron, shows transversal angular
momenta .J,, of its Fundamental particles (FPs) when moving with constant moment
p relative to a second SP (not shown). The transversal angular momenta of its FPs
follow the right screw law in moving direction independent of the charge. FPs with
opposed angular momenta are entangled and are fixed to the SP. No FPs are emitted
when moving with constant speed.

When the moving SP approaches a second SP (not in the drawing), the opposed
transversal angular momenta are passed to the second SP via their regenerating FPs
so that the first SP looses moment while the second SPs gains moment.

At b) a oscillating SP is shown with the pairs of emitted FPs with opposed angular
momenta at the closed circles changing ciclically their directions. At far distances from
the SP trains of FPs with opposed angular momenta become independent from the SP
and move with light speed (photons) relative to its source. According to which combi-
nation of opposed entangled FPs become independent we have a train with potentially
transversal momenta p (shown) or potentially longitudinal momenta p (not shown).

At c) a SP is shown that migrates slowly to the right outside the atomic nucleus and
is than reintegrated to the left with high speed to its nucleus . The migration is so slow
that no transversal angular momenta are generated at their FPs. When reintegrated,
FPs with opposed transversal angular momenta become independent and move until
absorbed by regenerating FPs of a second SP (not shown). As the transversal angular
momenta of a moving SP follow the right screw law in moving direction independent
of the charge of the SP, the reintegration will generate always potential longitudinal
momenta p in the direction of the nucleus. The emitted pairs of opposed angular
momenta with potential longitudinal momenta p have all the same direction, and when

passed to a second SP generate the gravitation force.
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No emission

b) SP moving with armonic oscillation p o sin(ot) 4 #0
t

EM emission (photon)

Figure 111: Electromagnetic and Gravitation emissions
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22 Quantification of forces between BSPs and CSPs.

In sec. 17.1 we have derived the speed v = k ¢ with which migrated BSP are reinte-
grated generating the Coulomb force and the two components of the gravitation force.
In sec. 9.2.1 we have seen that the momentum generated by one pair of FPs with

opposed angular momenta is

2 Erp

Prp = = 2.20866 - 10~ kgms ! (795)

We define now an elementary momentum

Petem =m k ¢ = 2.0309 - 107 kgms™" (796)

The number of pairs of FPs required to generate the momentum pe;.,, in the time

Ayt is

Petem _ 91951 - 10'° (797)
PFrP

In the following subsections we express all known forces quantized in elementary

linear momenta pejep, -

22.1 Quantification of the Coulomb force.

In Sec. 4.2 we have derived the Coulomb force between two BSPs arriving to eq. (202)
that follows

amc T
Fy= / / with / / — 2.0887 (798)
2 4 A td? Coulomb Coulomb

We now write the equation as follows

1

Fy = NC(d) E Pelem

= Nc(d) Vo Petem Detem = m k ¢ a=8774-1072 (799)

with

1
Ne( =9.1808 - 10726 800
C 4 k d2 //Coulomb d ( )

vo(d) = Ne(d) v, gives the number of elementary linear momenta peje,, during the
time A,t resulting in the force F5.
For an inter-atomic distance of d = 1071 m we get No = 9.1808 - 10~ resulting a

frequency of elementary momenta of
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vo(d) = No(d) v, = 1.1359 - 10" 571 for  d=10"""m (801)

22.2 Quantification of the Ampere force between straight in-

finite parallel conductors.

In Sec. 4.11 we have derived the Ampere force between two parallel conductors arriving
to eq. (281) that follows

F b 12 I, I, .
r_ Yo Zma Zma / / with / / =58731  (802)
dl C At 64 m d Ampere Ampere

and b = 0.25. We now write the equation in the following form assuming that the

velocity of the electrons is v << ¢ so that At ~ A,t and the currents are I, ~ p, m v,

where p, = N,/Ax is the linear density of electrons that move with speed v in the

conductors.
1

F = NA(d7 [m17 [m27 Al) Vo Pelem DPelem = kmec Vo = A ¢ (803)

with

b r? I, I
Nald, I, I, Al) = 0 m _Tma Al 4
A( 7 v ’ ) 64 k m2 02 d //Ampere (80 )
or
17 ]ml Imz

Na(d: Loy, Ly, Al) = 6.1557 - 1017 =222 Al (805)

For a distance of 1m between parallel conductors with a length of Al = 1m and
currents of 14 we get Ny = 6.1557 - 10'7. The frequency of elementary momenta for

this particular case

va = Na(d, I, In,, Al) v, = 7.6158 - 10" s7* (806)

22.3 Quantification of the induced gravitation force (New-

ton).

From sec. 19 eq. (765) we have that the gravitation force for one aligned reintegrating
BSPs is
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kmc / / / /
o with — 2.4662 (807)
4 K d? Induction Induction

which we can write with At = K ro and Peer, = km c as

7”2
Fy = Ni Vo Detem th — Ni= — o
Vo Pel we 4d2 //Induction ( )

Considering that AG; AGy = % M; M, we can write for the total force between

two masses M; and M,

FG = Fz AGl AGQ = NG Vo Pelem with NG = ]\/vZ AGl AGQ (809)

where N¢ represents the probability of elementary forces feem = Vo Petem in the
time At = K r2.
Finally we get

M, M.
Fg = Ng(My, My, d) vy paers~ with ~ Ng = 2.6555 - 10~° % (810)

The frequency with which elementary momenta are generated is

M,y My

ve = No(My, My, d) v, = 3.2856 - 10" T

(811)

For the earth with a mass of Mg = 5.974 - 10! kg and the sun with a mass of
M, = 1.9889 - 10%° kg and a distance of d = 147.1 - 10° m we get a frequency of
ve = 1.8041 - 10% 57! for aligned reintegrating BSPs.

22.4 Quantification of the gravitation force due to parallel

reintegrating BSPs (Ampere).

From sec. 20 eq. (780) we have for a pair of parallel reintegrating BSPs that

b o243
dFp = 5.8731 1~ 620 P2 mk %2 = 2.2086 - 10~ % N (812)
which we can write as
dFp = N Uy poers with N = 8.7893 . 1074 % (813)

where
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DPetem = k m ¢ and k=17.4315-1072

The total Ampere force between masses M; and ms is given with eq. (782)

My My

Fr=2.5551-107%2 vy y

N

We now write the equation in the form

My M.
Fr = Np(My, My, d) Uy petern~ with ~ Np = 1.01682- 1072 vy %
The frequency with which pairs of FPs cross in space is
M, M.
vr = Nr(My, My, d) v, = 1.25811 - 1072 v, ——2 57!

d

(814)

(815)

(816)

(817)

For the earth with a mass of Mg = 5.974 - 10** kg and the sun with a mass of
M = 1.9889 - 10%° kg and a distance of d = 1.5 - 10® m and a tangential speed of the

earth around the sun of vy, = 30 m/s we get a frequency of vg = 2.9896 - 103 s~ for

parallel reintegrating BSPs. The frequency vg for aligned BSPs is nearly 10° times

grater than the frequency for parallel reintegrating BSPs and so the corresponding

forces.

22.5 Quantification of the total gravitation force.

The total gravitation force is given by the sum of the induced force between aligned

reintegrating BSPs and the force between parallel reintegrating BSPs.

Fpr=1Fg+ Fr= [NG<M17M27d> + NR<M1> M27d)] Pelem Vo

or

2.6555-107%  1.01682-10~2°

o + p v | My My

FT:FG+FR: Pelem Vo

We define the distance dyq; as the distance for which Fg = Fr and get

2.6555 - 108 1
= 26116 -10*' —
1.01682 - 10-29 1y o

dgal =
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22.6 Transmission speed of elementary momenta between BSPs.

Fig. 112 shows at a) and b) for the Ampere and at ¢) for the Coulomb and the
Induction laws the emission v, and regeneration v, speeds of the rays of FPs with the
corresponding distribution function dx drawn for r or h constant and variable emission
angle .

Accelerating BSPs emit FPs with infinite speed and are regenerated by FPs with
light speed. Decelerating BSPs emit FPs with light speed and are regenerated by FPs
with infinite speed.

As accelerating BSPs provide the FPs for decelerating BSPs and vice versa only
two combinations of BSPs for the Ampere, the Coulomb and the Induction laws must
be analysed.

At Fig. 112 the distribution function dx was drawn for each BSP for a constant
distance r to show the contribution of the emitted FPs in the directions of ¢ and ~
(see also Fig. 107 and Fig. 41).

L r, : > Lr, .
dk = = -2 dr, sinp dy and / di = = -2 sin ¢ dy (821)
2 7”% Ty 2 Ty
For the Ampere Law the distribution functions for ¢ = 7/2 are shown for the two
BSPs in b) which is a view from below of a). We see that for ¢ = 7/2 the distribu-
tion faction dk is independent of «. The transmission speed vy.qns Of the elementary

momenta between the two BSPs is a function of the distances h; and hs as shown in
b).

e For the Ampere law the elementary momenta dp, are passed from a accelerating
BSP to a decelerating BSP with the speed vy.qns = 00.

e For the Ampere law the elementary momenta dpy are passed from a decelerating

BSP to a accelerating BSP with the speed v;.qns = c.

For the Coulomb and the Induction laws the distribution functions dx at the two

BSPs are functions of the distances r; and ry and the angle .

e For the Coulomb and the Induction laws the elementary momenta dp, are passed

from a accelerating BSP to a decelerating BSP with the speed vy.qns = 00.

e For the Coulomb and the Induction laws the elementary momenta dp, are passed

from a decelerating BSP to a accelerating BSP with the speed v;.qns = c.

We have seen in sec. 6 that a neutron is composed of 919 electrons and 919 positrons.
The 919 electrons are composed of 459 accelerating, 459 decelerating and 1 acc/dec

electrons. The 919 positrons are composed of 459 accelerating, 459 decelerating and 1
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dec/acc positrons. We see, that at each neutron the required combinations are present
to pass the elementary momenta between neutrons with speed vy.q,s = 00 what explains

that gravitation transmits with infinite speed.

Ampere

Figure 112: Transmission speeds of elementary momenta dp between BSPs
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23 Types of particles and interactions.

General considerations.

FPs are the energy recipients of all kind of manifestations in physics. The energy is
stored in longitudinal and transversal rotations of FPs, storage that is independent of
any kind of coordinate system. Rotation momentum of FPs is transformed into linear
momentum of BSPs out of pairs of opposed angular momentum of FPs. Interactions

between FPs are described as products between the square roots of their energies.

Types of Particles

e Fundamental Particles (FPs)

— FPs are the energy recipients of all kind of manifestations in physics. The
energy is stored in as rotation, storage that is independent of any kind of

coordinate system.
e Basic Subatomic Particles (BSPs = Elementary Particles)

— BSPs with FPs bound to focal points in space (electron and positron)

— BSPs with FPs independent of focal points in space formed by two FPs with

opposed angular momenta (neutrinos)
e Complex Subatomic Particles (CSPs)

— CSPs with FPs bound to focal points in space (neutrons and protons which

are formed by electrons and positrons)

— CSPs with FPs independent of focal points in space but bound to a se-
quence of FPs with opposed angular momenta (photons which are formed

by neutrinos)
e Transitory Subatomic particles

— Particles with unstable configurations of FPs with short lifetimes (Leptons
and Hadrons except electrons, positrons, neutrinos, neutrons, protons and

photons).

Types of Interactions

Interaction laws between FPs of two BSPs are defined as products between their
dH fields.
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e Coulomb law: The close path integration of the cross product between longi-

tudinal dH, fields gives the Coulomb equation.

e Ampere law: The close path integration of the cross product between transver-
sal dH,, fields gives the Lorentz, Ampere, Bragg and one component of the grav-

itation equations.

e Induction law: The close path integration of the product between the transver-
sal field dH,, and the absolute value of the longitudinal dH, field of a static BSP

gives the Maxwell equations and one component of the gravitation equations.
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Part VI Relativity

Relativity is deduced as exclusively a speed problem with time and space absolut

variables.

24 Relativity.

24.1 Introduction.

Space and time are variables of our physical world that are intrinsically linked together.
Laws that are mathematically described as independent of time, like the Coulomb and
gravitation laws, are the result of repetitive actions of the time variations of linear
momenta.

To arrive to the transformation equations Einstein made abstraction of the physical
interactions that make that light speed is the same in all inertial frames. The result of
the abstraction are transformation rules that show time dilation and length contraction.

The physical interactions omitted by Einstein are:

e photons are emitted with light speed c relative to their source

e photons emitted with ¢ in one frame that moves with the speed v relative to a

second frame, arrive to the second frame with speed ¢ + v.
e photons with speed ¢ + v are reflected with ¢ relative to the reflecting surface

e photons refracted into a medium with n = 1 move with speed ¢ independent of
the speed they had in the first medium with n # 1.

The concept is shown in Fig. 113

The Lorenz transformation applied on speed variables, as shown in the proposed
approach, is formulated with absolute time and space for all frames and takes into
account the physical interactions at measuring instruments that produce the constancy

of the measured light speed in all inertial frames.

24.2 Lorenz transformation based on speed variables.

The general Lorentz Transformation (LT) in orthogonal coordinates is described by

the following equation and conditions for the coefficients [6]:

Z(ei)2 = Z(W Z aLai = O Z akfal = o™ (822)



Figure 113: Light speed at reflections and refractions

with

O =age" + v 823
k

The transformation represents a relative displacement b’ and a rotation of the frames
and conserves the distances A© between two points in the frames.
Before we introduce the LT based on speed variables we have a look at Einstein’s

formulation of the Lorentz equation with space-time variables as shown in Fig. 114.
2?4 2 (i )2 = 22 4 72+ 22+ (ic, 1)? (824)

AC I AC

o o

\ A

K K

< z
z
Figure 114: Transformation frames for space-time variables

For distances between two points eq. (824) writes now

(Az)? + (Ay)? + (A2)* + (ic, At)? = (AZ)* + (AY)* + (A2)* + (ic, AT)*  (825)
The fact of equal light speed in all inertial frames is basically a speed problem and
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not a space-time problem. Therefor, in the proposed approach, the Lorentz equation
is formulated with speed variables and absolut time and space. Dividing eq. (825)

through the absolute time (At)? and introducing the forth speed v. we have

v+ v + v+ (ive)? = 02 + U + 02 + (ive)? (826)

The concept is shown in Fig. 2.
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Figure 115: Particle as focal point in space

The forth speed v, introduced is the speed of the Fundamental Particles (FPs) that
move radially through a focus in space as shown in Fig. 115.

The FPs store the energy of the subatomic particles as rotations defining longitu-
dinal and transversal angular momenta. The speed v, is independent of the speeds v,,

v, and v,, forming together a four dimensional speed frame.

J— *

Avc V AV,

c

— *

K K — K * Vv,

</ 4

Figure 116: Transformation frames for speed variables

For the Lorentz transformation with speed variables Fig. 116 we get the following

transformation rules between the source frame K and the virtual frame ]_( :
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b Uy = vy Uy = Uy

C) v, = (Uz - U) Yo Vy = (7_)2 + U) Yo
v v

d) Ve = (Uc - Uz) Yo Ve = (770 + — Uz) Yo
Ve c

with 7y, = [1 — 02 /v2] /2

24.3 Transformations for momentum and energy of a particle.

For v, = 0 and v, = ¢, where ¢ is the light speed, we get

a) Uy = Uy b) Uy = vy

c) U, = —0 Y, d) Ve = C Yy

We see that for v, = 0 the transformed speeds v, and v, are not linear functions of

the relative speed v because

p2\ "2 12 1-3 /02\? 1-3-5 [0\
U: 1__ :1 - - - —_— PR 827
o= (1) tpto () fare () (827)

The case v, = 0 is the case of a particle placed at the origin of the frame K. The

momentum and the energy of the particle in the frame K are given by

D=mu, =—m vy, E:mc@c:mcc%zw/EgjLEg (828)

2

E, =mc and E, = mcv, = mc vy, (829)

As the speed v, in the frame K is parallel to the relative speed v between the
frames, the momentum and the energy of a particle moving with v in the frame K
and a relative speed v, between the frames must give the same values. That we obtain

multiplying the transformed speeds v; with ~,_

—1/2

Yoo = [L—v2/ve] (830)

We get for the general case with v, # 0 the momentum and the energy in the frame
K
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P=m VY, = m (V= V)V Yo, E =mc Ve Yo, = me (Ve — EUZ)”YU’YUZ (831)
v,

C

Note: The frame K is a virtual frame because the speeds calculated with the
Lorentz transformation equations for this frame are virtual speeds and not the real
Galilean speeds of the particles, which are v,, = v, £v. The frame K gives the virtual
velocities that allow the calculation of the values of the momentum and energy, which

are not linear functions of the real Galilean speed ..

For the distances between the frames K and K the Galilean relativity is valid.

AzZ=z,+v At  with  At=At forall speeds v (832)

If we start counting time when the origin of all frames coincide so that it is

z2=z=2z"=0 for t=0 (833)

we get for the different types of measurements

Measurement K K I*{

1deal Z =2, Z=z, kvt =z, vt
non destructive zZ =2z, Z=z,tvt ez, tut
destructive Z =2, Z=z,tuvt 2" = 2, £ U theas

where t,,0q4s 1S the time the destructive measurement took place at the instrument
placed in K*.

As time and space are absolute variables it is

At = AT = At* Az=Az=Az (834)

Note: The Lorentz transformation equations a),b) and c) are independent equa-
tions with the variables v,, v, and v,; there is no cross-talking between them. Not so

equation d) where 7, is a function of v, and v,. The speed v, is modifying ..

24.4 Transformations for electromagnetic waves at measuring

instruments .

According to the present approach measuring instruments are composed of an inter-
face and the signal comparing part. Interfaces are optical lenses, mirrors or electric

antennas.
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The concept is shown in Fig.117
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Figure 117: Transformation at measuring equipment’s interface

Electromagnetic waves that are emitted with the speed ¢, from its source, arrive to
a relative moving frame of the measuring instrument with speeds different than light
speed, are first absorbed by the atoms of the interface and than emitted with light
speed ¢, to the signal comparing part .

To take account of the behaviour of light in measuring instruments an additional
transformation is necessary.

In Fig 117 the instruments are placed in the frame K* which is linked rigidly to the
virtual frame K. Electromagnetic waves from the source frame K move with the real
speed v,, = ¢, £ v in the virtual frame f( . The real velocity v,, can take values that
are bigger than the light speed c,.

The links between the frames for an electromagnetic wave that moves with ¢, in

the frame K are:

K K K
e) W A=\,
f) vV, = C, Up, = Co T vi=c,
g f=c/A fr. =0/
h) fz:ﬁzry f::fz
i) E=htf. E=hf. E=hf;

e) shows the link between the frames K and }_( . The wavelengths A\, = A,
because there is no length contraction.

f) shows the real Galilean speed v,_ in frame K.
g) shows the real frequency f,.. in the frame K.
h) shows the virtual frequency f. in the frame K and the link
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to the frequency f* of the frame K*.

i) shows the equation for the energy of a photon for each frame.

Note: Also for electromagnetic waves the frame K gives the virtual velocity that
allows the calculation of the values of the momentum, energy and frequency, which are
not linear functions of the real speed o, .

For electromagnetic waves we have the following real speeds for the different types

of measurements:

X«

Measurement K K Refraction
ideal V, = Cp Up, =CoE£0 vl = ¢ n=1

non destructive V, = Co Up, = Co £V v < ¢ n>1
destructive V, = C, Uy, =Co L0 vy = n = 00

with n the optical refraction index n = ¢, /v?.

24.5 Equations for particles with rest mass m # 0.

Following, equations for physical magnitudes are derived for particles with rest mass
m # 0 that are measured in an inertial frame that moves with constant speed v. For
this case the transformation equations a), b), ¢) and d) from K to K are used. The
transfomation from K to K* is the unit transformation, because of conservations of

momentum and energy between rigid linked frames.

24.5.1 Linear momentum.

To calculate the linear momentum in the virtual frame K of a particle moving in the
source frame K with v, and v, = v, = 0 we use the equation c) of sec 24.2, with
Ve = Co. The speed v, = ¢, describes the speed of the Fundamental Particles (FP)
emitted continuously by electrons and positrons and which continuously regenerate
them, also when they are in rest in the frame K (v, = v, = v, = 0). From (831) we
define

v, = (Uz - U)’sz%) (835)

The linear momentum p, we get multiplying o, with the rest mass m of the particle.

/

Pz=m 772 =m (Uz - ’U)P)/vzf)/v = pz (836)

Because of momentum conservation the momentum we measure in K* is equal to

the momentum calculated for K , expressed mathematically p; = p,.
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Eq. (836) is the same equation as derived with special relativity.
Note: The rest mass is simply a proportionality factor which is not a function of

the speed and is invariant for all frames.

24.5.2 Acceleration.

To calculate the acceleration in the virtual frame [_( we start with

dv, /

what gives for v,(t) and 7, (t)

— d/UZI . dqu _ d’yvz . dez d
e = = = e T s = Yo Yo + (V2 = V) Ve Vo (838)

dt
From momentum conservation p; = p, we have that

a. =a (839)

z

24.5.3 Energy.

To calculate the energy in the virtual frame K for a particle that moves with v, in the
frame K we use the equation d) of sec 24.2, with v, = ¢,. The equation d) is used
because it gives the speeds of the FPs where the energy of the subatomic particles is

stored.

v
Ve — — Vg

Tp = —— = (1, — 2 V)Y = Uy, Y (840)

V1—v?/v? a Ve

To get the energy in the frame K we multiply o, with mcvy,,. See also eq. (831).
We get
_ - v
E =mc vy, = me (Ve — —0.) YoV, (841)

Eq. (841) is the same equation as derived with special relativity.
With v, = 0 we get

E=—"% _ . /E2 4+ E2 (842)
V1—v2/c
with
Ep =m |0, co = |P.] ¢ UV, = Vs Vo E,=m cg (843)
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To calculate the energy Ep = m v, ¢, we must calculate v, as explained in sec.
24.5.1 with v, = 0.

The energy F, is part of the energy in the frame K and invariant, because if we
make v = 0 we get F, as the rest energy of the particle in the frame K.

Because of energy conservation between frames without speed difference the energy

E* in the frame K* is equal to the energy F in the frame K.

24.6 Equations for particles with rest mass m = 0.

In this section the equations for electromagnetic waves observed from an inertial frame
that moves with the relative speed v are derived. A comparison between the proposed

approach and the Standard Model is made.

24.6.1 Relativistic Doppler effect.

The speed v. = ¢, describes the speed of the Fundamental Particles (FP) emitted
continuously by electrons and positrons and which continuously regenerate them, also
when they are in rest in frame K (v, = v, = v, = 0). In the case of the photon no
emission and regeneration exist.

The photon can be seen as a particle formed by only two parallel rays of FPs. The
first ray carries FPs with opposed transversal angular momenta of equal orientation
and the second ray carries FPs with transversal angular momenta opposed to the first
ray. At each ray FPs exist only along the length L of the photon.

The concept is shown in Fig. 118
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Figure 118: Photon and neutrino
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To calculate the energy of a photon in the virtual frame K that moves with v, = ¢,
in the frame K we use the same equation d) of sec 24.2 used for particles with m # 0,
with v, = ¢, and v. = ¢,. We use equation d) because the energy is stored in FPs. We

get

v
Ve — — U
_ Ve

U= ————=(Co — V)V (844)

VI

Note: As the energy of a photon is a function of the frequency, the energy in the

frame K is not afected by the non linear factor ..

The momentum of a photon in the frame K is p. = Epn/co = h f/c, which we
multiply with v, to get the energy of the photon in the frame K. The transformation
of the energy between the frames K and K* is E* = F and we get:

For the measuring instrument moving away from the source

_ _ E., A/ Co— U
E=p.9. =" (¢, — w=F) ~——=FE"=hf" 845
et = "2 (e = 0) % = B Y f (345)

With E,;, = h f we get the well known equation for the relativistic Doppler effect

propYe—v o 1 _VIitve (846)

and with ¢, = A f and ¢, = A* f* we get the other well known equation for the

relativistic Doppler effect

A _Vi-ve (847)

e V1+v/e,

Eq. (846) is the same equation as derived with special relativity.

Note: No transversal relativistic Doppler effect exists.

Note: The real frequency f,. in the frame K is given by the Galilean speed v,, =
¢, + v divided by the wavelength A = A. The energy of a photon in the frame K is
given by the equation E,,= h f, where f, = f.. v, with f.. = (¢, £ v)/\, the real

frequency of particles in the frame K.

Note: All information about events in frame K are passed to the frames K and
K* exclusively through the electromagnetic fields £ and B that come from frame K.
Therefore all transformations between the frames must be described as transformations

of these fields, what is achieved through the invariance of the Maxwell wave equations.
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24.6.2 Transformation steps for photons from emitter to receiver.

Electromagnetic signals (photons) have to pass an interface at the receiver until a
measurement, can be made. The interface is an optical lense, a mirror or an antenna.
The signals undergo two transformations when travelling from the emitter to the re-
ceiver. The first transformation occurs before the interface and the second behind the
interface.

The concept is shown in Fig.119
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Figure 119: Transformation at measuring equipment’s interface

If we assume that the emitters signal in the K frame is

c=Af (848)

the signal befor the interface of the receiver in the K frame is;

for the measuring instrument moving away from the source

\/_VC;” and A=\ and  v,=c—v (849)
C v

At the output of the interface we get the signal in the K* frame that is finally

f=f

processed by the receiver.

¢ and A= YE v and vl =c¢ (850)

Vet c—v N

At the first transformation the wavelength A = X doesn’t transform (absolute space)

3

f =17

i

and at the second transformation the frequency f = f* (absolute time).
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The speed before the interface ¢ £ v is the galilean speed which changes to v} = ¢,
the speed of light, before the processing in the receiver. This explains why always c is

measured in all relative moving frames.

24.7 Relativistic energy of FPs.

A photon is a sequences of pairs of FPs with opposed angular momenta at the distance
A/2 as shown in Fig. 118. The potential linear moment p of a pair of FPs with
opposed angular momenta is perpendicular to the plane that contains the opposed
angular momenta. The potential linear moment of a pair of FPs with opposed angular
momenta can take every direction in space relative to the moving direction of the pair.
The emission time of photons from isolated atoms is approximately 7 = 107% s
what gives a length for the wave train of L = ¢ 7 = 3 m. The total energy of the
emitted photon is E; = h v, and the wavelength is A, = ¢/1;,. We have defined that
the photon is composed of a train of FPs with alternated angular momenta where the
distance between two consecutive FPs is equal \;/2. The number of FPs that build
the photon is therefore L/()\;/2) and we get for the energy of one FP
b;t 2t = % =3.313-107% J =2.068- 107" eV (851)

and for the angular frequency of the angular momentum h

EFP =

Ep 1 7 -1
=—=—=5-10 852
Vep h 2T 5 (852)

We can define an equivalent proportionality factor mgp
Eepp = mgp & with  mgpp = 2.29777-10** kg (853)

The relativistic energy of a FP is

Mep C2 2.068 - 1077 v
= e
v1i—=v2/cz  \J1—-0v%/c?

A neutrino can be seen as Ngp pairs of FPs with opposed angular momenta that all

(854)

Egp = mgp ¢, Ve =

contribute to one potential linear momentum.

Flestrino = Npp Egp = Ngp 2.068 - 1077 eV (855)

Photons can be seen as a sequence of neutrinos with opposed potential linear mo-
menta at the distance \/2.
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24.8 The proposed approach and the Standard Model.

The proposed approach represents a photon as a package of a sequence of FPs with
opposed angular momenta. Packages are emitted with the speed c, relative to its
source. A monochromatic source emitts packages with equal distances A between FPs.

A package emitted with the speed c,, the frequency f and the vawelength A in the
frame K will move in the virtual frame K with the real speed v, = ¢, = v, will have
the same vawelength A = X and a real frequency f, = (c, & v)/A. In the frame K*
the package is absorbed by the atoms of the measuring instruments and immediately
reemitted with the speed ¢, relative to K*. The frequency f* in the frame K* is equal
to the virtual frequency f in the frame K which is given by the product of the real
frequency f, and the factor 7.

The proposed approach unifies the frames K and K* defining that the packages
move from their source in frame K through space with the speed ¢, & v relative to the
frame K* of the instruments.

The Standard Model unifies the frames K and K to one frame defining that the
packages (photons) move already from their source through space with the speed ¢,
relative to the frame K* where the measuring instruments are located. This gives the
impression that an absolute frame (aether) must exist for the photons to move always
with ligth speed ¢, independent of their sources.

For the Standard Model the length of a package in space (length of the wave train
or coherence length) is [ = (¢, = v)7 while for the present approach it is [ = ¢, 7 (7
is the time needed for traversing the coherence length 1), which is independent of the
relative speed v .

Theories normally known as “Emission Theories” analysed by Willem de Sitter
and Daniel Frost Camstock are theories that don’t produce well defined spectroscopic
lines for a star rotating around a neutron star (Astrometric binaries), contrary to what
is observed. In the proposed approach packages with equal distances between their
FPs (equal \) but with different speeds ¢, + v from a star rotating around a neutron
star (Astrometric binaries) produce well defined spectroscopic lines in accordance with

experimental observations.

24.9 Conclusions.

The special Lorentz transformation formulated by Einstein is based on space and time
variables and the definition of different times for inertial frames, what leads to trans-
formation rules between frames with time dilation and space contraction.

Based on the proposed approach “Emission & Regeneration” Unified Field Theory,

where electrons and positrons continuously emit and are regenerated by Fundamen-
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tal Particles (FP), the following conclusions about special relativity based on speed

variables were deduced:

e The fact of equal light speed in all inertial frames is basically a speed problem
and not a space and time problem. Time and space are absolute variables and

equal for all frames according to Galilean relativity.

e Electromagnetic waves are emitted with light speed ¢, relative to the frame of

the emitting source.

e Electromagnetic waves that arrive at the atoms of measuring instruments like op-
tical lenses or electric antennae are absorbed and subsequently emitted with light
speed ¢, relative to the measuring instruments, independent of the speed they
have when arriving to the atoms of the measuring instruments. That explains

why always light speed ¢, is measured in the frame of the instruments.

e The transformation rules of special relativity based on space-time variables as done
by Einstein describe the macroscopic results between frames making abstraction
of the physical cause (measuring instruments) of constant light speed in all frames
and require therefore space and time distortions. The transformation rules of
special relativity based on speed variables as done in the proposed approach, take
into consideration the physical cause (measuring instruments) of the constant

light speed in all frames and therefore don’t require space and time distortions.

e All relevant relativistic equations can be deduced with the proposed approach.
The transformation rules have no transversal components, nor for the speeds

neider for the Doppler effect.

e The speed v, of the fourth orthogonal coordinate gives the speed of the FPs emit-
ted continuously by electrons and positrons and which continuously regenerate
them.

e Particles with rest mass are more stable when moving because of the interactions
of their Fundamental Particles (FPs) with the FPs of the masses of real reference

frames as explained in the proposed approach, and not because of time dilation .

The transformation equations based on speed variables are free of time dilation and
length contraction and all the transformation rules already existent for the electric and
magnetic fields, deduced on the base of the invariance of the Maxwell wave equations
are still valid for the proposed approach.

The electric and magnetic fields have to pass two transformations on the way from

the emitter to the receiver. The first transformation is between the relative moving
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frames while the second is the transformation that takes into account that measuring
instruments convert the speed of the arriving electromagnetic waves to the speed of
light ¢, in their frames.

The present work shows how the measuring equipment must be integrated in the
chain of interactions to avoid unnatural conclusions like time dilation and length con-
traction.

Note: General Relativity introduced by Einstein is based on time dilation and
length contraction and is the gravitation theory of the Standard Model. With the
abolition of time and length distortions General Relativity is not more valid and is
replaced by the gravitation theory based on the reintegration of migrated electrons

and positrons to their nuclei as explained in sec. 17 of the proposed approach.
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Part VII Miscellaneous 11

25 Miscellaneous.

The strong and weak forces are presented as forces that don’t need to be especially
defined as separate forces.

The possibility of entanglement of BSPs is explained with the strong coupling of
corresponding opposed angular momenta of fundamental particles.

The origin of permanent magnetic fields is explained with the energy flow between
atoms or molecules.

The relation between the elementary bending momentum and the total momentum
between two straight conductors is presented.

The Stern-Gerlach experiment and the spin of the electron are explained based on
Ampere bendin.

The origin of the instability of free positrons is explained.

Energy levels of electrons in atoms are commented.

Radiation of accelerated BSPs is explained.

Coulomb force on a level electron.

Gravitation and background-noise.

Binding energy of BSPs in the nucleons.

25.1 Strong and weak forces.

a) Strong forces are defined in standard physics theory as those forces that bind
quarks into hadrons. They explain why protons coexist in the atomic nucleus even
having the same charge.

The proposed approach explains the coexistence of BSPs with equal signs (electrons
or positrons) in nuclei with the annulation of linear momenta when the distance between
them tends to zero. As nucleons are formed by electrons and positrons, no special strong
force has to be defined to explain this physical phenomenon, thus allowing the existence
of stable complex particles (see Fig. 29). When electrons and positrons join to form
protons or neutrons, the difference between the rest masses is emitted or absorbed as
photons or neutrinos.

We have defined as An; = nj” — n; the difference between the number of positive
and negative BSPs that form the complex particle 1.

For the proton we have n™ = 919 and n~ = 918 with a binding Energy of Ep,,,, =
—6.9489 - 10~ J = —0.43371 MeV. For the neutron we have n™ = 919 and n~ = 919

with a binding Energy of Ep = 5.59743 - 10714 J = 0.34936 MeV .

neutr
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b) Weak forces are defined in standard physics theory as those forces that bind
heavy leptons and quarks.

According to the proposed approach all BSPs (electrons and positrons) that form
protons and neutrons of an atomic nucleus must move in the zones left of the maximum
of the momentum curve of Fig. 29. BSPs in zone 1 don’t repel neither attract each
other because the linear momenta are zero. For BSPs that migrate outside zone 1 of
the atomic nucleus the linear momenta are not more zero. A polarization with the
remaining BSPs of zone 1 emerges, generating an attracting or repelling force. At
nuclei with low atomic numbers Z all migrated BSPs are reintegrated to the nucleus.
At nuclei with high Z and high numbers of protons and neutrons forming their atomic
nuclei, migrated BSPs at zone 2 of the nuclei are closer to the maximum of the curve
of Fig. 29, and less energy is required to overcome the maximum of the curve allowing

a tunnelling effect explaining radioactivity.

25.2 Light speed.

All fundamental particles emitted by an electron move with light speed relative to a
coordinate system which is fix with the electron. When a level electron changes its
energy level it looses or gains pairs of fundamental particles with opposed angular mo-
menta. The pairs of fundamental particles form chains with alternated potential linear
momenta, resulting in a configuration known as photon (see Fig. 68 ¢). Photons that
are emitted by a coordinate system that moves with the speed u relative to a second
coordinate system will arrive at the second with the speed ¢ & u. In Fig. 120 one con-
stituent of a photon (opposed dH,,) is shown just before being absorbed by an electron
of the second coordinate system transferring its potential linear momentum dp,. The
now moving electron in the second coordinate system will generate opposed transversal
dH,, which are irradiated with the speed of light when the electron is stopped after a
distance Ax because of the bindings to its atom. The Light that we measure is first
absorbed by level electrons of our instrument (glass of the optical system, etc.) and
subsequently emitted with light speed relative to the instrument, what explains why
we always measure light speed. Light that moves through matter (glass, water, etc.) is
constantly absorbed by level electrons and immediately emitted with light speed. The
resulting reduced speed through matter is due to the time spent in the absorbtion and
emission by level electrons.

The concept is shown in Fig. 120.
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dp, = b, ~0
Figure 120: Mechanism responsible for constant light speed in all inertial frames

25.3 Life time of muons.

The life time of muons increases with speed according experimental verifications. On
Fig. 121 we will show the mechanism how the mean life of muons increases with speed.
Muons are complex SPs composed of electrons and positrons except for the binding
energy. Electrons or positrons that migrate outside the first region (see sec. 10) will be
reintegrated or expelled. For a muon with v = 0 the tunnel barrier for expelled particles
is given by curve pgq.:, which flattens with increasing v while the field dH,, increases.
For v # 0 electrons and positrons that are accelerated to v, in the second region are
forced by the dH, field to follow a circular path, thus reducing the probability for the
electron and positron to be expelled.

The comparison of the statistical counts of muons made at different heights involves
no measurements of time nor length with the help of light, and therefore does not
require time nor length corrections according to special relativity.

The concept is shown in Fig. 121.
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Figure 121: Increase of mean life time of muons with speed
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25.4 Reflection and refraction of light.

On sec. 25.2 we have seen, that light adjusts its speed to the light speed ¢ relative to a
coordinate system fix with matter that has absorbed and then emitted it. Light that
is reflected also takes the speed c relative to a coordinate system fix with matter that

has reflected it because of the emission speed of FPs of the BSPs of the matter.

25.5 Entangled BSP.

When we analyzed the balance of energy and rotational momenta in the following

sections
e 2.11 for BSPs that move with constant speed v and
e 4.8 for induced momentums between two static BSPs and
e 4.11.2 for induced momentums between two parallel straight conductors

we have seen that there is a strong coupling between the rotational momenta of
fundamental particles, so that constantly corresponding opposed rotational momenta
are generated and destroyed. We have also seen that the coupling is independent of
the distance between corresponding rotational momenta and that it is defined by
dk(p,r,v) = de(m — @, r,v).

There is a configuration that is common for all BSPs, namely rings of transversal
rotational momenta .J, with sum zero. For BSPs with v # c this rings cannot exist in-
dependently because of the balance conditions for the longitudinal rotational momenta
J,. For BSPs with v = ¢ the longitudinal rotational momenta J; are zero and therefore
the rings exist as independent configurations in the form of opposed transversal angular
momenta.

When complex particles with v = ¢ (photons) are split, couplings remain between
the two parts of the trains of opposed transversal rotational momenta, couplings that
are independent of the distance between the splitting products. Because of the near
infinite speed of one of the two types of fundamental particles, the splitting products

change their quantum state instantly independent of the distance between them.

25.6 Electron and positron compensation and annihilation.

The representation of electrons and positrons as focal points of rays of FPs, where the
energy is stored in the angular momenta of their FPs, explains the compensation and
annihilation of electrons and positrons as follows: (see also Fig. 7)

Fig. 122 shows the electron positron compensation. When the electron shown at a)

and the positron shown at b) are moved slowly together, they compensate each other
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Compensation of angular momenta

Figure 122: Electron positron compensation

for the interactions with other external charged particles. At ¢) the compensation is
shown as the result of the compensation of the longitudinal angular momenta J of all
their FPs.

Fig. 123 shows the annihilation of an electron with an positron. At the regenerating
FPs of moving electrons or positrons transversal angular momenta J,, are generated as
shown at a) and b. When the electron and positron collide, trains of pairs of FPs with
opposed transversal angular momenta (photons) are expelled with the speed “ ¢ ¢, as
shown at ¢). Also individual pairs of FPs with opposed transversal angular momenta
(neutrinos) may be expelled with the speed c¢. The photons and neutrinos are entities
where the sum of their angular momenta is equal zero and therefore they can become

independent entities of the focal point.
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Electron positron annihilation

Figure 123: Electron positron annihilation

25.7 Differences between the Standard and the E & R Models
in Particle Physics.

An important difference between the two models we have in particle physics. The
concept is shown in Fig.124

The SM defines carrier particles X for the interaction between particles A and B
and leads to energy violation during the time h/AE. The range R of these carrier

particles defines the distance over which the interaction can take place and is given by

_h
_MXc

where M is the mass of the carrier particle with the coupling strength ¢ to the

R

(856)

particles A and B. For electromagnetic interactions the carrier particles are the photons
with My = 0, the range is R = co. For the weak interactions the carrier particles are
the W and Z bosons with masses in the order of 80 — 90 GeV/c? corresponding to a
range of 2- 1072 fm. For the strong and gravitation interactions the carrier particles
are the gluons and gravitons respectively with My = 0 and range R = oc.

The F & R model has no carrier. The particles A and B are formed by rays of F' Ps
that go from oo to oo through a point in space which is called “Focal Point”. FPs
are continously emited from the Focal Point and F'Ps continously regenerate the Focal
Point. The regenerating F'Ps are the F'Ps emited by other Focal Points in space. The
particles A and B are continously interacting through their F'Ps, independent of the
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Figure 124: Differences between the Standard and the E & R Models

distance between them. There is no difference between subatomic particles and their
F'Ps which are the constituents of subatomic particles.

F Ps have no rest mass and are emitted with the speed ¢ or oo relative to the Focal
Point. They have longitudinal and transversal angular momenta and their interaction
is given by the cross product of their angular momenta, cross product which is propor-
tional to sin 5. To get the total force between the particles A and B, the integration
over the whole space of all the interactions of their F'Ps is required.

All interactions are electromagnetic interactions and are generated out of the
combinations of the interactions of the longitudinal and transversal angular momenta
of the FPs.

The strong interaction is explained with the zero electromagnetic force between
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electrons and positrons, which are the constituents of nucleons, for the distance between
A and B tending to zero. No force is required to hold nucleons together.

Weak interactions is an electromagnetic interaction between migrated electrons
or positrons that interact with the remaining electrons and positrons of the nuclei core.
The small electromagnetic force is explained with the small distances between A and
B, force which is proportional to the cross product which is proportional to sin 3. See
Fig. 124.

Gravitational interactions are the result of electromagnetic interactions between
electrons and positrons that have migrated slowly out of their nuclei and are then

reintegrated with high speed.

25.8 Mass and charge in the E & R Model

The SM defines mass and charge as different physical characteristics, although it cannot
explain what charge is. It defines particles like the neutrons having mass but no charge.

The E & R Model defines mass and charge as physical characteristics that are
intrinsic to particles and cannot be separated. The charge of an electron and positron
is defined by the sign of the longitudinal angular momentum of emited F'Ps. Positive
rotation in moving direction corresponds to a positive charge and negative rotation to
a negative charge. Neutrons are composed of equal numbers of electrons and positrons
so that their longitudinal angular momenta of emited F'Ps compensate, resulting an
effective zero charge.

A mass unit is associated with a charge unit. To the mass 9.1094 - 1073! kg of a
positron or electron corresponds a charge of & 1.6022 - 101 C.

For complex particles that are formed by more than one electron or positron we
have for the Coulomb force

F =2.307078 - 10728 % N (857)

The charge @ of the Coulomb law is replaced by the expression An = n* —n~
which gives the difference between the constituent numbers of positive and negative
particles (positrons and electrons) that form the complex particle. As the n; are integer
numbers, the Coulomb force is quantified.

The expression An = n* —n~ corresponds to the nuclear charge number or atomic

number Z.

An=n*—n" = Z (858)

As examples we have for the proton nt = 919 and n~ = 918 with a binding Energy
of Ep,,, = —6.9489 - 107 J = —0.43371 MeV, and for the neutron n™ = 919 and
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n~ = 919 with a binding Energy of Ep,,,, = 5.59743 1071 J = 0.34936 MeV .

25.9 Permanent magnetism.

Based on the present theory, two possible mechanism of how permanent magnetism is

generated can be imagined:

e An energy flow along a closed chain of static BSPs.

e A current flow along a closed chain of reintegrating BSPs.

An energy flow along a closed chain of static BSPs.

Between two static isolated BSPs that are separated by the distance d, energy is
exchanged because of the flow of fundamental particles. The transversal rotational
momenta J." generated on the regenerating fundamental particles compensate each

other. The concept is shown in Fig. 125.

Figure 125: Energy flow between two static basic subatomic particles

If the energy flow is between static BSPs that belong to a close chain of atoms
or molecules as shown in Fig. 126, the transversal rotational momenta J generated
between two adjacent BSPs of the chain don’t compensate, resulting in a field that
is equal to the magnetic field generated by a current of BSPs in a closed circuit but
without the moving of the BSPs.

The concept is shown in Fig. 126.

The same is valid for a closed chain of positive complex particles (atomic nucleus

or ions).
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Energy flow

Figure 126: Energy flow along a closed chain of static basic subatomic particles

Atomic nucleus

Migrated BSP O {+—® G~ ® Migrated BSP

Atomic nucleus

Figure 127: Current flow along a closed chain of reintegrating BSPs
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A current flow along a closed chain of reintegrating BSPs. The concept is
shown in Fig. 127.

In sec.20 we have described how the reintegration of BSPs to their nuclei generates
a current. If we have a synchronized reintegration of BSPs along a closed chain of
nuclei, a closed current I, is generated that produces a permanent magnetic field. It
is important to remember that BSPs migrate slowly outside their nuclei and are then

reintegrated with high speed.

25.9.1 Induced Magnetic spin in nucleons by an external magnetic field.

Fig. 128 shows a nucleon in an external permanent magnetic field H,. Electrons and
positrons that have migrated outside the nucleus core are reintegrated with the speed
v,. The Lorentz force generates a current i,, which generates a magnetic field H,

opposed to H,.

i X H, X 0, (859)

An external applied perturbating electro-magnetic field, usually radio frequency
pulse, absorbe and re-emit electro-magnetic radiation. This is the mechanism used in

nuclear magnetic resonance.
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i ocH xv,

Figure 128: Induced magnetic spin in nucleons.

Nucleons have a magnetic moment independent of the externally applied magnetic
field H,, because of the mutually interacting magnetic fields of the reintegrating elec-

trons and positrons.

25.9.2 Faraday paradox.

The Faraday paradox or Faraday’s paradox is an experiment in which Michael Faraday’s
law of electromagnetic induction appears to predict an incorrect result. The paradoxes

fall into two classes:

e Faraday’s law appears to predict that there will be zero EMF but there is a
non-zero EMF'.

e Faraday’s law appears to predict that there will be a non-zero EMF but there is
a zero EMF.
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Rotating disc with
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L oop differential dl . :
D
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L= fﬁ al : Permanent magnet
; with current loop |,

Faraday paradox

Figure 129: Setup to explain Faraday’s paradox.

The setup consists of a disc and a magnet that are fitted a short distance apart
on the axle, on which they are free to rotate about their own axes of symmetry. An
electrical circuit is formed by connecting sliding contacts: one to the axle of the disc,
the other to its rim. A galvanometer can be inserted in the circuit to measure the
current.

The concept is shown in Fig. 129

According to the present approach permanent magnets are generated by current
loops i, that are produced by the reintegration of electrons and positrons to their
nuclei. In a metal that is not magnetized, the reintegration occurs randomly in all
directions at each nucleus and no current loop exists. When magnetized, the reinte-
gration is oriented along a closed loop of nuclei what gives a current I, where each
reintegrating electron and positron remains associated to its nucleus. When the mag-
net rotates, according the direction of rotation the current in the magnet increases or
decreases relative to the measuring equipment.

When the disc rotates, the free electrons at the disc generate a current loop Ip

relative to the measuring equipment. So we have two parallel current loops, one at the
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magnet and one at the rotating disc. The parallel currents will attract or repel each
other according the Ampere law. Between differential dl of the loops at points 1 and 2
the force is perpendicular to the surface of the disc and no EMF is induced at the disc
by these currents. Between points 2 and 3 the force has a component in the direction
of the surface of the disc and an EMF is generated.

The following situations are possible:

a) Only the disc rotates. We have two parallel current loops that induce an EMF at
the disc.

b) Only the magnet rotates. We have no current in the disc and no EMF is induced

in the disc.
c) Disc and magnet rotate. We have again case a) and an EMF is induced in the disc.

If one intends to explain the above situations with the help of the Lorentz law which
describes the forces based on the magnetic field, the question arises if the field rotates
or not with the magnet. With the Ampere law no use of a magnetic field is made and

all situations are explained satisfactorily.

25.10 Emission Theory.

The present approach is based on the postulate that light is emitted with light speed
relative to the emission source.

Fig 130 shows how bursts of FPs with opposed angular momenta (photons) emitted
with light speed c travel from frame K to frames K and K* with speeds c+u from A and
c—u from B. When they arrive at the measuring instruments at C, the transformations
to the frames K and K* take place from where they continue than with the speed of
light ¢ (See also sec. 24.6)

The assumption of our standard model that light moves with light speed ¢ inde-
pendent of the emitting source induces the existence of an absolute reference frame or
ether, but at the same time the model is not compatible with such absolute frames.
The objections made by Willem de Sitter in 1913 about Emission Theories is based
on a representation of light as a continuous wave and not as a sequence of bursts of
equal length L of FPs of opposed angular momenta with equal wave length A. The
analysis of de Sitter makes no use of the quantized description of nature. Photons with
speeds ¢+ v and ¢ — v may arrive simultaneously at the measuring equipment showing
the two Doppler spectral lines corresponding to the red and blue shifts in accordance
with Kepler’s laws of motion. No bizarre effects will be seen because photons of equal
length L and A\ with speeds ¢ 4+ v and ¢ — v giving well defined lines corresponding to

the Doppler effects will arrive to the spectral instruments.
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A ct+u

Figure 130: Emission Theory.
The present approach is based on a modern physical description of nature postu-
lating that

e photons are emitted with light speed c relative to their source

e photons emitted with ¢ in one frame that moves with the speed v relative to a

second frame, arrive to the second frame with speed ¢ 4 v.
e photons with speed ¢ + v are reflected with ¢ relative to the reflecting surface

e photons refracted into a medium with n = 1 move with speed ¢ independent of
the speed they had in the first medium with n # 1.

The concept is shown in Fig. 131
When the Lorentz transformation is applied with the above postulates, “Relativity
without time delay and length contraction” results as shown in Sec. 24.1.

The frequency change of a photon is produced by:

e the interaction with orbital electrons in the case of optical lenses and electric
antennas of measuring equipment (Doppler-Effect). The change of frequency is

due to the change of the relative speed.
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Figure 131: Light speed at reflections and refractions

e the interaction with gravitation fields. The change of frequency is due to the

change of the number N of FPs per photon (red-shift).

25.11 Redshift of photons in gravitation fields

The emission time of photons from isolated atoms is approximately 7 = 10~% s what
gives a length for the wave train of L = ¢ 7 = 3 m. The total energy of the emitted
photon is E; = h v, and the wavelength is Ay = ¢/v,. We have defined that the photon
is composed of a train of FPs with alternated angular momenta where the distance
between two consecutive FPs is equal A;/2. The number of FPs that build the photon

is therefore

NFzzgufzzL% (860)
and we get for the energy of one FP

B, _E XN h

Epm = —f — = — 1
PTNe T 2L 27 (861)
and for the angular frequency of the angular momentum h
Er 1
=—=— 862
. h 2T (862)

Calculation example: With 7 = 107% s we get a length for the wave train of
L =c7=3m what gives Er = 3.313-10720 J =2.068-10"" eV and vp = 5-107 s~ L.

The gravitational field and the photons are composed of FPs with transversal an-
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gular momenta which interact when the photon moves through the gravitation field.

We now assume, that the length L of a photon remains constant when moving with
¢ through a gravitational field. The number Np of FPs contained in the length L of
a photon vary proportional with the intensity ¢ of the gravitation field and the pass
length Ar through it, according to

ANp & Np g Ar (863)
with
F, M
= —_— [E— 4
9=, = ¢ (864)

We get for the relative variations from (860)

ANF AVt AA{;
= =92
N, ” by (865)

and for the variation of the wavelength

A)\—i\tochr:GMl% (866)

Calculation example: In 2020 a group at the University of Tokyo measured the

gravitational redshift of two strontium-87 optical lattice clocks. The measurement took

place at Tokyo Tower where the clocks were separated by approximately Ar = 450m
and connected by telecom fibers. The gravitational radius r = 6.378 km.

By Ramsey spectroscopy of the strontium-87 optical clock transition (429 THz, 698

nm) the group determined the gravitational redshift between the two optical clocks to

be 21.18 Hz, corresponding to A/\—’t\t =5-10"1*. With

we get Ky = 1.15- 10717 s?/m?.

25.12 The Newton gravitation field.

The gravitation field is an induction field and has its origin in the reintegration of
migrated electrons/positrons to their atomic nuclei . When reintegrated, rays of FPs
emitted with light speed carry opposed transversal angular momenta J,, which are
passed to electrons and positrons of an other atomic nuclei generating at them the

gravitation force.
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Neutron 1 Neutron 2

Figure 132: Momentum transmitted from neutron 1 to neutron 2

Fig. 132 shows two neutrons which are composed of electrons and positrons. At neu-
tron 1 we have an electron/positron d which has migrated out of the neutron core and
which is reintegrated to the core when its FPs interact with FPs of an electron/positron
c. The moment p; generated during the reintegration is passed per induction to an
electron/positron of neutron 2, remaining finally the opposed momenta p. and p, which
explains the attraction of the two neutrons. The gravitational moment p; is passed
through the FPs emitted with light speed “c” by the electron/positron d.

If Neutron 1 moves with the speed u relative to neutron 2 the gravitational moment

is passed through FPs that move with the speed ¢ 4 u.

25.13 Sagnac effect.

In the SM the results of the Sagnac experiment are not compatible with Special Rel-
ativity and are easily explained with non relativistic equations but still assuming that
light moves with light speed independent of its source. As the present approach pos-
tulates that light is emitted with light speed relative to its source, equations for the
Sagnac experiment are derived based on the mentioned postulate.

The concept is shown in Fig. 133

The Postulate also includes the possibility of speeds that are greater than the light
speed “c”.

Fig. 1 of Fig. 133 shows the arrangement with a light source at point “0” and a
detector for the two counter-rotating light rays also at point “0’. Mirrors are placed at

points “17, “27  .....7n” of the ring. The tangential speed of the rotating arrangement

(1))

1s “v”.
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Figure 133: Sagnac experiment

Points “0” and “1” are placed in the parallel planes “a” and “b”. For the time a
photon of the length L and wavelength A takes to pass from plane “a” to plane “b” the
relative speed between them of v, = v(1—cos ¢) can be assumed constant. If we imagin
that plane “a“ moves relative to plane “b” then, according to the emission theory, the
speed of the ray that leaves “a” in the direction of “ b “ has the speed v, = ¢ — v, as
shown in Fig. 2 of Fig. 133.

Also according to the emission theory the output wavelength A\, at “a” must be
equal to the input wavelength \,,. We get for the frequancies v

c— c— U,
A, = ” = Ao, — Up, = . (868)

The frequencies at the input and output of plane “b” must be equal
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c—v c c
.= L= = — — Ap, = Aa 869
Vp; o Vb, N, bo = L _ v, % (869)

Writing the last equation with the nomenclature used for the points “0” and “1”

we get

AL = — ), (870)

c— v,

and for the points “1” and “2” we get

2
o, = —~ )\10:< ¢ ) Mo, (871)

c— v, c— v,

[13)]

Generalising for “n” we get for the ray in counter clock direction

c " 1
A, = A, = — A 2
’ (C_UT’) . (1_UT/C)n " (87 )
and for the ray in clock direction
’ C " 1
A, = Ay, = — A
Tt (c + vr) 0 (1+wv./c)" 0o (873)

With

(n+1)

(1£v/0)™ =17Fn(v,/c) + T LR for Ju,fc| <1 (874)

neglecting all non linear terms we get for the wavelength

Aetect = 1+ n(v./c) Ao, )\/detect =1—n(v./c)\, (875)

and for the difference

A)\detect = )\detect - )\:letect =2 TL(UT/C) )\Oo (876)
With R the radius of the ring we have that 2 = v/R and with v, = v(1 — cos¢) we
get
1- A
Ao = 210 T CCOS AL (877)

For n >> 1 and with [ the length of the arc on the ring between two consecutive
mirrors, we can write that 27 R m ~ n [ with m the number of windings of the fibre
coil. We also have that cosp &~ 1 — »?/2 and that ¢ = [/R. We get
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l
A)\detect =21m - )\00 Q (878)
Cc

The wavelength difference between the clock and anticlockwise waves is proportional
to the angular speed () of the arrangement.
The interference of two sinusoidal waves with nearly the same frequencies v and

wavelengths A is given with

2

F(r,t) = 2cos {2# ()\Td — Ayt)] sin [27? <§ — Vtﬂ )\modmz—)\ (879)

For our case it is Av = 0 and AN = A)djeieer and we get

[
F(r,t) = 2cos {4%2 m oo r Q] sin {2% (ALO ) t)] (880)

For a given arrangement the argument of the sinus wave varies with r for a given
(2 following a cosinus function.
For the intensity of the interference of two light waves with equal frequencies but

differing phases we have

I(r) = 1i(r) + Ly(r) + 2 \/I1(r) I(r) cos[p1(r) — wa(r)] (881)

The phases are in our case

¥1 (T) /\2 A)‘detect‘ SOQ(T) = )\2 A/\detect (882)

The intensity of the interference fringes are given with

I(r) = Li(r) + L(r) + 2 \/I1(r) Iy(r) cos [47? mALTQ} (883)

The fringes of the intensity vary with r for a given 2 following a cosinus function .
We have derived the interference patterns for the sagnac arrangement based on the
emission postulate that light is emitted with light speed c relative to its source and that
light is refracted or reflected with light speed independent of the input speed. There

is no incompatibility with “SR without time delay and length contraction”.

25.14 Precession of a gyroscope due to the Ampere gravita-

tion force.

To derive the precession of a gyroscope in the presence of a massive body we start with

equation (281) derived for the total force density due to Ampere interaction.
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F 2 [m [m V2maz Mmaz in2 —
b "5 1 2 / S (71 72) (884)
d 2 ol

i —" dy d
Al cAjt 64m L V/sinyg siny, e

min

with f fAmPere = 5.8731.
It is also for v <€ ¢

m

N, 1
In=pmv Agt=Kr: IL,=—1, (885)
q

Pr="Az 2 o
We have defined a density p, of BSPs for the current so that one BSP follows

immediately the next without space between them. As we want the force between one

pair of BSPs of the two parallel currents we take Al = 2 r,.
The concept is shown in Fig. 134

Figure 134: Gyroscopic precession.

For one reintegrating BSP it is p = 1. The current generated by one reintegrating
BSP is

im=pmuo,=pmkc with U =k c k=74315-10"2 (886)
The currents at the rotating gyroscope that are parallel to the current 7, of M; are

iw =1 pmu, with v, = w Ry (887)
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For the two opposed forces that give the momentum at the gyroscope and which

generate the precession we get

Um Uy Um Uy

F, F,, o« — 888
1 (S8 + d— Rw 2 X d+ Rw ( )

From eq. (884) with v; = v, = k ¢ we get for a pair of moving BSPs

b 273 vy Uy
dFp = 5.8731 2 p? N 889
R c At 64 pom d (889)
and d >> R, we get the total force
b 2 7’3 Ml M2
Fr = 5.8731 07 M Uy Uy YV N 890
R CA7 64 P M Um e Ya g (890)
My M.

Fr=2551-107% o, % N (891)

with M; and M5 the masses of the bodies.
Note: For distances d between gravitating masses smaller than dy,; the precession
due to the Ampere force is neglect able compared with the precession due to the Newton

gravitation force.

25.15 Thirring-Lense-Effect.

The Thirring-Lense-Effect is an effect that is based on the induction law and on the
Doppler effect.

In sec. 15.4 about induction bending the following equation was deduced for the
force induced on a probe BSP by a BSP moving with speed v.

The concept is shown in Fig. 135

' = 1 _,
d F;, = 5 VT T, rot C, (892)
T
with
~' 1 o .
rot C, = Py Vm v? r_3 [2 cos®0 —sin®6] e, + 0-¢, (893)
T r

r

% vm v? :—; sin 6 cos 6 ey
For the analysis of the dragging produced by a rotating mass on a probe mass
placed in the equatorial plane, the components of the induced force in the direction e,
and the direction ey are required.

The concept is shown in Fig. 136
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Figure 135: Force induced on a BSP at a bending edge
by a BSP moving with speed v.

/ 1 2
d'F, e, = Tk v? :—; [2 cos® @ — sin? 0} er (894)
v 1 5 T2 _
d F; eg= G2 MY e sin @ cos 6 &g (895)

P %\2

2¢co0s’0 —sin’0

1

Figure 136: Plotting of the trigonometric relation for the analysis of Dragging.

For equal speed v and distance r, the components of the forces in the direction of
the speed v are equal but opposed for the angles # and 27 — 6. This means that two
BSPs located at # and 27 — 0 induce on the probe BSP forces in the direction of v that
compensate each other.

Fig. 137 shows two BSPs from the surface of the earth that moves with the speed v
relative to a probe BSP, located at the distance d. Each moving BSP emittes rays of
FPs with light speed c relative to the BSP, with a constant interval A between them.
The speed of the FPs relative to a probe BSP, located at the ray is

c+v cost =Av (896)
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c+vcosO,

BSP, —> 3 BSP, —V
Figure 137: Dragging due to Doppler effect.

FPs located at the proximity of the probe BSPF, have a higher probability to con-
tribute to the generation of the force on the probe BSPp. The angle 6 = arcsin(d/r)
of the probe BSP, is therefore used to calculate the force.

For the two BSPs located at the angles #; = 6 and 6, = 27 —6 we get the frequencies
of FPs at the probe BSPp

0 )
Vl:c—l—v/\cos 1 V2:c+v)\cos 9 Vo:§ (897)
With egs. (894) and (895) we get for the components of the forces in the direction
of the speed v taking into consideration the Doppler effect

d'F, = v d'F; cosf &, 0 = arcsin(d/r) (898)
Vo

d"F, = v d"F,, sinf & 0 = arcsin(d/r) (899)
Vo

The dragging forces in the direction of the speed v on the probe BSPE, are

d' Fyog = (d'F, —d'F,) = i d'F; cosf e, (900)

Vo

d"F,, sinf e (901)

n

d" Fjeg=(d"F,, —d

The total dragging force is
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_ 2 w/2 , "
Fdrag = _/9 (d Fdrag +d Fdrag) dao (902)

T Jo—o

25.16 Atomic clocks and gravitation.

Oscillations of mechanical instruments like a pendulum have been used in the past to
define time unit of second. Big efforts were made to minimise the influence of factors like
temperature, vibrations, humidity, gravitation, etc. on the precision. Modern clocks
make use of the quantized change of states of atoms which takes place at a much higher
frequency leading to better precisions. When comparing the precision of clocks it is
very important to compare them under the same conditions of temperature, vibrations,
humidity, gravitation, etc. If this is not possible, corrections for each deviation must be
made. The origin of the variation of the precision of atomic clocks due to gravitation
is unknown and can be attributed to changes in the energy levels of the atoms itself or
to changes in the frequencies of photons after emission.

The intention of the present section is to show a possible mechanism based on the
approach that gravitation is generated by the reintegration of BSP to their nuclei.
According to the approach, the energies of level electrons are given by stable dynamic
configurations of BSPs in nuclei, which change for each atom and its ions. The number
of regenerating FPs with opposed angular momenta that arrive to a nucleus is a function
of the distance to the other gravitating nucleus. They influence the stable dynamic
configuration of BSPs in the nucleus changing the energy of level electrons.

The gravitation components are due to:

e Reintegration of BSPs in the direction of the distance between the gravitating

bodies (induction, Newton).

My M,
TZ

Fe=G

(903)
e Reintegration of BSPs perpendicular to the distance between the gravitating

bodies (Ampere).

M,y M,
r

Fr =4 R(v) with R(v) =2.551-1072 v (904)

25.16.1 Hafele-Keating Experiment.

We assume that the atomic transition frequencies of the atoms used in atomic clocks

change proportional to the gravitation force and so the gains and losses expressed in ns.
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Each Caesium atom C!?3 of an atomic clock changes its frequency with the gravitation
force.
The following measured data were obtained during the Hafele-Keating Experiment:

The concept is shown on Fig. 138.

MZ

east <g— N V

V

west

Sun North

M, pole

Figure 138: Influence of gravitation on clocks frequency.

a) Flying eastwards a total loss of At¥ = —59 ns was measured during a flight of 41.2
hours at a hight of h¥ = 8.900 m and a speed of v = 950 km/h relative to the

earth surface.

b) Flying westwards a total gain of At" = 273 ns was measured during a flight of
48.6 hours at a hight of A" = 9.400 m and a speed of v = 950 km/h relative to

the earth surface.

The gain or loss was measured relative to an equivalent atomic clock based on the
earth.

At Fig. 138 we have the earth with mass M; and the mass M, of an Caesium atom
C33 moving with the speed v east or westwards relative to the surface of the earth at
an altitude h. The current I, due to the interaction of reintegrating BSPs of the earth
and the sun has the same direction as the rotation w of the earth on its axis relative
to the sun (see sec.20.2).

The results of the Hafele-Keating Experiment are better expressed in ns loss or

gain per day.
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Eastwards the plane was flying during 41,2 h which is equivalent to 1,716 days and
which gives a total loss eastwards of AtF = —59/1.716 = —34, 38 ns/day.

Westwards the plane was flying during 48,6 h which is equivalent to 2,025 days
and which gives a total loss westwards of At" = 273/2,025 = 134,81 ns/day.

We get for the losses and gains in ns/day

AtF = 34,38 ns/day and At = 134,81 ns/day (905)

The total gain or loss eastwards and westwards is

AtF = Ath + Ath and AV =AY + ALY (906)

The proportionality factors are not the same for the Newton and Ampere gravitation
forces because of the different generation mechanism of the gravitation forces.

The proportionality factors are defined as

_ Atg Aty
- AFg  AFg

where At are the ns/day due to the Newton gravitation and Aty are the ns/day

and R

e (907)

due to the Ampere gravitation.
The difference between the Newton gravitation forces between the distances d; and

dy from the centre of the earth is given by

1 1
AFG = FG2 — FG1 =G Ml M2 |iﬁ — ﬁ‘| where d2 < d1 (908)
2 1
The difference between the Ampere gravitation forces of a body moving with v,
at the hight d; and dy from the centre of the earth is given by
1 1

AFR = R<Utot) M, M, |:d— — d—:| where doy < dy (909)
2 1

where vy, is a velocity still to be deduced.

As the Hafele-Keating experiment doesn’t give measured values of Atg, we calcu-
late the proportionality factor K with measured values of an experiment made by
Briatore and Leschiutto in 1976. The experiment concentrates exclusively on the
influence of the Newton gravitation on the frequency of clocks. The measured data

are:
a) Turin hy = 250 m and Plateau Rosa h; = 3.500 m

b) Atg = 33,8 —36,5 ns/day
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For the calculation of AFg we use
a) The mass of C1* with M, = 2,2061 - 107 kg
b) The mass of the earth M; = 5,972 - 10* kg
c) For Plateau Rosa d; = Rg + hy = 6.378,0 km + 3,5 km = 6.381,5 km
d) For Turin dy = Rg + ho = 6.378,0 km + 0,25 km = 6.378,25 km
We get AFg =2,2201-1072" N and for the proportionality factor

Atg 33,8
AFg — 2,2201-10-27

ns

N day

Kg = =1,5362 - 10% (910)

Now we can calculate for the Hafele-Keating Experiment the clock variations that
correspond to the Newton gravitation for the east flight with d¥ = 8,9 km and the
west flight with dY = 9,4 km. We get

AtE = 92,45 12 d AW =97,63 22 911
@ " day an ¢ " day (911)
With
AtF = Ath + Ath and A =AY + Aty (912)
we get
At = —126,83  and  Atl =37,18 (913)
With
11 a0
AtR == KR R(Utot) Ml M2 d_ — d_ R<vt0t) = 2.551-10 Vtot (914)
2 1

we get with v,y = vg in the east direction and v,,; = vy in the west direction

AtE 1 1 1 1
=L gy (915)
and
AtE
SR 00468 22 or E =k =3,602 (916)
Aty (7% U
We define that
Vg = Vg + v and Uy = Vg — U (917)
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where v is the velocity of the plane relative to the surface of the earth and vg a

velocity still to be determined. We get that

k+1
T k-1

If we assume that the velocity of the commercial plane used was v = 750 km/h we
get for vg = 1.326 km/h or vg = 368 m/s.

The speed of the surface of the earth at the equator in a frame with centre at the

vs v=1,7683 v (918)

sun and the earth placed at an axis of the frame is veenser = 463 m/s, which is not far
from vg = 368 m/s. The difference could come from the not very reliable data of the
Hafele-Keating experiment.

The conclusion is, that the speed vg = 368 m/s calculated on the basis of the
variations of the frequencies of atomic clocks due to the influences of the Newton and
Ampere gravitation forces based on the mass of the C!33 atom, is not far from the
speed Ueenter = 463 m/s of the surface of the earth at the equator for a frame placed at
the centre of the earth. This can be seen as a confirmation of the proposed approach
for the gravitation mechanism as the result of the reintegration of migrated electrons

and positrons to their nuclei.

Finally we calculate also the proportionality factor Kg for the Ampere gravitation.

K= Xry, [* = AFg | (919)
1 1

AFp = R(v) My My [d— — d_} where dy < dy (920)
2 1

with v;,; = vg for the east direction and v,; = vy for the west direction. We get

AtR AtR ns
Kp=—=1F ="V =29965.10"° —— 921
B AFg | AFp | ’ N day (921)
For Kz we had
Ko = = =1,5362-10%® ——— 922
¢ AF;  2,2201-1027 N day (922)

Now we calculate the current I; generated by the speed vg of BSPs. From sec.20
we have with vg that is = p, m vg and for the earth we get In; =15 y4 Mg.
We defined a density p, of BSPs for the current I, so that one BSP follows imme-

diately the next without space between them and get
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N, 1
Pz = Az - 27,
With p, = 1,2957 - 10" m™', m = 9,1094 - 1073! kg, vs = 368 m/s, ya =
1,07558 - 10% kg™!, and Mg = 5,972 - 10%* kg we get for the current I, at the equator
that generates the transversal field dH,, of the earth.

with 1, =3,8590- 107" m (923)

Ing = pe m vs Y4 Mg = 2,7900 - 10™® kg/s (924)

25.17 Instability of positive BSP.

In sec. 6 we have assumed that bright matter is composed of accelerating and deceler-
ating BSPs that regenerate each other. Positive accelerating with negative decelerating
BSPs and positive decelerating with negative accelerating BSPs form two independent
groups of BSPs.

The condition for BSPs to become level BSPs is that they have BSPs in the nucleus
that provide them with regenerating FPs instantaneously and without fluctuations.

Fig. 36 shows a negative decelerating level BSP and a positive accelerating nuclei
BSP.

Level electrons move constantly while electrons and positrons that constitute the
nuclei are confined in a small volume with a bigger inertia and provide the FPs required
by the level electrons. Emitted FPs from level electrons are fully used to regenerate
the corresponding positrons in the nucleus. In such an environment a free positron
has not a stable regenerating source of FPs and transforms to photons and neutrinos,

which don’t need regeneration.

25.18 Energy levels of electrons in atoms.

To analyze qualitatively the origin of the energy levels for electrons in atoms we take
a hydrogen atom which has in his nucleus 919 positive BSPs and 918 negative BSPs.
These BSPs in the nucleus are in a dynamic balance and their emitted fundamental
particles meet with the fundamental particles of an external level-electron. The prob-
ability that the emitted fundamental particles of a BSP in the nucleus meet with the
regenerating fundamental particles of a level-electron depends on the position the BSP
has relatively to the other BSP in the nucleus. This relative position varies constantly

and is influenced by the external level-electron.
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If we now take an atom with more than one proton, the first level-electron will
influence the distribution of the BSPs in the atomic nucleus to get the maximum
binding force. Each following level-electron will find a less favourable distribution of
the BSPs in the atomic nucleus and thus have a weaker binding force than the previous
one.

The external electrons are therefore coupled to the atomic nucleus by different
binding forces and have different energy levels. Because of the quantified numbers
of BSPs in the atomic nucleus the energy levels of the external electrons are also

quantified.

25.19 Radiation of accelerated BSPs.

We have seen, that BSPs that move with constant velocity v emit and are regenerated
constantly by FPs. At the time ¢, = 0 a BSP is regenerated by FPs that have interacted
with FPs that were emited during the time —oo < ¢t < 0. FPs emitted by the BSP
in the past, interact with regenerating FPs that meet the same BSP at t, = 0, if the
BSP moves with constant speed. If the constant movement of the BSP is perturbated
(acceleration), part of the regenerating FPs miss the BSP and are irradite in space.
In the case of a level electron that is constantly accelerated in radial direction, the
regenerating FPs that miss the electron are not irradiated into space, but absorbed
by the regenerating FPs of a BSP of the nucleus that is very close. The BSP of the
nucleus is accelerated generating transversal angular momenta on its regenerating FPs
that are absorbed by the level electron. The energy, that in the case of an accelerated
free electron is irradiated into space, is in the case of the radially accelerated level

electron returned to the level electron via the atomic nucleus.

25.20 Coulomb force on a level electron.

For increasing speed of a BSP, the regenerating longitudinal field dH, of the BSP
decreases while the transversal regenerating field dH,, increases. With decreasing lon-
gitudinal field dH, the Coulomb force to an other BSP decreases.

If we imagin an electron with an elliptic orbit around the nucleus, moving from the
aphelion to the perihelion the speed increases, decreasing the Coulomb force. When the
electron is moving from the perihelon to aphelion the speed decreases and the Coulomb

force increases.

25.21 Binding energy of BSPs in the nucleons.

The binding energy is defined as
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with n* the number of positive and n~ the number of negative BSP that form the
nucleon. m, and Mmy,uceon are the masses of the electron and the nucleon.

For the proton we have n* = 919 and n~ = 918 with a binding Energy of Ep , =
6.9489 - 1071* J = 0.43371 MeV.

For the neutron we have n™ = 919 and n~ = 919 with a binding Energy of Ep__,, =
—5.59743 - 107 J = —0.34936 MeV .

Stable complex particles have positive binding energies, meaning that the nucleon

has less energy than the sum of the rest energies of its component BSPs.

26 Characteristics of a good theory.

The present work is not only limited to show the pragmatic approach of SR and GR
by Einstein and its consequences, it presents also an alternative theory where the
interactions omitted by Einstein are considered. The question that arises is how to
decide for one of these theories .

The primordial objective of a physical theory or a scientific model is to allow cal-
culations that match with experimental data obtained with measurements. A second
objective is to allow theoretical predictions that still must be corroborated through
experimental data.

A good theory is a theory that

e describes mathematically the biggest number of physical interactions based on

the fewest postulates.

e has mathematical descriptions that give calculated data that best match experi-

mental data.

e needs the less number of fictious entities (particle wave, gluons, gravitons, dark

matter, dark energy, time dilation, length contraction, Higgs particle, etc.)

e needs the less number of helpmates (duality principle, equivalent principle, un-

certainty principle, violation of energy conservation (Feynman), etc.)
e is consistent with the less number of paradoxes and contradictions.

e has the biggest potential to predict new interactions and particles.
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26.1 Impediments for scientific progress.
26.1.1 Experimentally proven.

A theory like our Standard Model was improved over time to match with experimental
data introducing fictious entities (particle wave, gluons, gravitons, dark matter, dark
energy, time dilation, length contraction, Higgs particle, Quarks, Axions, etc.) and
helpmates (duality principle, equivalent principle, uncertainty principle, violation of
energy conservation, etc.) taking care that the theory is as consistent and free of
paradoxes as possible. The concept is shown in Fig. 139. These improvements were
integrated to the existing model trying to modify it as less as possible what led, with the
time, to a model that resembles a monumental patchwork. To return to a mathematical
consistent theory without paradoxes (contradictions) a completely new approach is
required that starts from the basic picture we have from a particle. “E & R” UFT is
such an approach representing particles as focal points in space of rays of FPs. This
representation contains from the start the possibility to describe interactions between
particles through their FPs, interactions that the SM with its particle representation

attempts to explain with fictious entities.
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Fallacy used to conclude that the existence of
fictitious entities is experimentally proven

1. | Detection of experimental data 4
that don’t fit with the current SM

2. | Definition of fictious entities based on
the experimental data that don't fit.

3 Making the SM consistent with new
" | fictious entities as good as possible

4. | Inventing justifications for remaining
contradictions

5. | Declaring fictitious entities and
contradictions as the new standard

6. | Glorifying and idolizing the fictious
entities and their creators <3

7 | Detection of additional experimental data that|  Right
can be explained with the fictious entities -

‘y Wrong

ssaib0oud o1uaIos Joj Juswipadwi }sebbig

8. | Prove that fictious entities really exist

Examples of fictious entities of the SM

Gluons Gravitons Dark matter
Dark energy Time dilation Length contraction

Figure 139: Fallacy used to conclude that fictious entities really exist
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Fig. 139 is an organigram where the main steps of the integration of fictious entities
to the SM are shown. All experiments where the previously defined fictious entities
are indirectly detected (point 7. of Fig. 139) are not a confirmation of the existence of
the fictious entities (point 8. of Fig. 139), they are simply the confirmation that the
model was made consistent with the fictious entities (point 3. of Fig. 139).

All experiments where time dilation or length contraction are apparently measured
are indirect measurements and where the experimental results are explained with time
dilation or length contraction, which stand for the interactions between light and the
measuring instruments, interactions that were omited.

In the case of the increase of the life time of moving muons the increase is because
of the interactions between the FPs of the muons with the FPs of the matter that
constitute the real frame relative to which the muons move. To explain it with time
dilation only avoids that scientists search for the real physical origin of the increase of
the life time.

26.1.2 Epicycles of the Standard Model.

The Geocentric model with its circular orbits was too simple to get a good match
between experimental and calculated data. The model was improved adding for each
planet a set of epicycles to the circular orbits resulting a complicated description which
was still far from the real movement of the planets.

The concept is shawn in Fig. 140

A big improvement was done when switching first to the Heliocentric representation
and then introducing the eliptic orbits.

The concept is shawn in Fig. 141

If we have a look on the presently accepted SM, also big efforts are made to improve
the capacity to describe new experimental data adding more and more new particles
and concepts, trying at the same time to make the model consistent. This procedure
has its limits as shawn with the geocentric model and its epicycles, which became so
abstract and strange from reality that a radical new approach was required. This is
the present state of our SM.

Following a list of epicycles added to the SM during the last 150 years:

Examples Epicycles

Special Relativity time dilation and length contraction
General relativity time space curvature

Coexistence of protons in nuclei Strong force (Gluons)

Radioactivity Weak force (W, Z Bosons)

Stern Gerlach Electron intrinsic magnetic spin
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Epicycle

Geocentric model

Figure 140: Epicycles of the Geocentric model

Flattening of Galaxie’s speed curve Dark matter
Expansion of Galaxies Dark energy
Quarks Fraction of electric charge Q/e

With the “E & R “ UFT approach, where particles are represented as focal points,
and the finding that electrons and positrons neither attract nor repel each other when
the distance between them tend to zero, the epicycles added during the last 150 years
are not more required.

The affirmation that epicycles are experimentally confirmed is a fallacy.
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Planet

Heliocentric model

Figure 141: Heliocentric model

26.1.3 Peer-review, a fire-wall against new approaches.

In science, peers are those persons that use scientific models with the same postulates
to describe nature. A person who uses the geocentric model is not a peer of a person
that uses the heliocentric model to describe nature. In religion, a person who uses a
theology based on the christian dogmas is not a peer of a person that uses a theology
based for instance on the Islamic dogmas.

The mechanism of peer-review to decide about the acceptance of a paper makes
only sense, if the content of the paper is based on the same model (theory) the reviewer
uses to judge it, for instance the standard model. It has the advantage, to eliminate
papers that are based on the standard model but doesn’t use it correctly.

It is logically not acceptable, to subject a paper that presents a new model to
peer-reviewing using a different model than the proposed. The review of such a paper
requires first the study of the new model and the effort to understand the new approach,
and second, to confront it only with existent experimental data. In practice, reviewers
have not the time and interest to do such an intensive work without remuneration, and
therefore prefer to reject the paper, what is in the interest of the established institutions

and has no negative repercussions on the reviewer.
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Part VIII Quantum Mechanics

Quantum mechanics formulated with the focal point representation of subatomic par-

ticles.

27 Quantum mechanics expressed in terms of the

approach “Emission & Regeneration” UFT.

Quantum mechanics differential equations are based on the de Broglie postulate. In
the theoretical work about the interaction of charged particles, where particles are
represented by a non local model emitting and absorbing continuously fundamental

particles, a relation between the radius r, and the energy of a particle is derived.

h
ro = FC with E = /E2+ EZ the relativistic energy. (926)

This relation is used instead of the de Broglie wavelength, to build wave packages
with a Gauss distribution, and to derive the corresponding probability differential
equations of quantum mechanics.

The effects on the uncertainty relations and the most important quantum mechanics
operators are presented.

Note: When deriving the wave-package with the radius-energy relation, the mass of
a particle is considered as concentrated in a sphere with a diameter equal approximately
to two times the radius r, given by the radius energy-relation. This is not according to
the approach that represents particles as Focal Points which led to the radius-energy
relation where the mass (energy) of a particle is distributed from r, to infinity, outside

the sphere with radius 7,.

27.1 General considerations.

To make use of the of Fourier-Transformation, the movement of a particle is first
described as a sequence of particles represented by a sinus wave, having a wavelength
A equal to 27r,. Then the Fourier-Transformation of a wave package of sinus waves
with a Gauss shaped amplitude is build.

We have that

h
A= 2mr, = 27— © with  Ba=.\/B2+E2 (927)

rel

with
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E, =m, ¢ E,=pc p=——— (928)

The sinus wave on the x-axis is

. 2 P
£x = A eilhz o= ) with ky = )\—W and — w, =27 1))\— (929)

If we now introduce in the expression that \, = 27wr,, = 2nhc/E,., we get

.C Erelz Uy
& = Aexp {Zf_i ( 2 T 2 Ere, t)] (930)
or
ETE
& = Aexp {Z% ( Czlz T — Pa t)} (931)
with
’U2 —1/2 v
By, =m, ¢ (1 - —3") and Py = —; Era, (932)
15 C

with E,.;, the relativistic energy of the particle on the x-axis.

Note: The wave-length used by Schroedinger is based exclusively on the kinetic

energy El,. for the non-relativistic case as follows.

h
A=27r, =27 ¢

rel

with E,=0 and E,=pc where p=muv (933)

The proposed approach includes for the calculation of the wave-length the total

energy with the rest energy of a particle. For the relativistic cases we get

he L (934)

A =27nr, = 2w

For v — ¢ we get that A\ — 0.

27.2 The wave package.

We define the Fourier-Transformation of a wave package [1,2]; on the x-axis as

oue)= o [ o) eap (i o) 2 = et} dpe (039

2m J_ o

with a Gauss distribution x,(p,) on the p,-axis
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5alpe) = B exp {—(Z(;—;))} (936)

and the dispersion my.;, = My, (p,) with

E.. 1
Myel, = Cle Myel, = Myer, (Pz) = g\/Eg + p2c? and E,=m,* (937)

Because of symmetry reasons we can write also a wave package

1 [t c
¢$($, t) = X:c(mrelx) eExrp {2% [mrelz T — px(mrelm) t]} d/’nrelI (938)

2 ) o

with the Gauss distribution on the m,.;, -axis

(m'rel — Mgl )2
T re =A - = _— 939
X (m lz) exrp { 4(Amrelz)2 ( )

and the dispersion

Pa(Myer,) = €A/ My — M2 and My = — (940)

27.3 Differential equations.

27.4 Unrestricted differential equations.

In this and the following section the probability differential equations are derived. The
differential equations are classified into unrestricted and non-relativistic. Then they
are subclassified in groups of general, time or space independent.

The unrestricted differential equations are valid for the whole range of speed 0 <
v < e

We start with the wave package

1 [t c
Vy(2,t) = %/ Xa(Myet, ) €TP {Zﬁ [Myet, T — Pa(Mirer,) t]} dmmyer,, (941)
with
o Erelz _ 2 2
Myel, = — and  pe(Myer,) = ¢ /M2y —m? (942)
c
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with

E’relz = Eo + Ekznz =1/ Eg + E]%:L Eo = moCQ Epz =Pz C (943)

For the unrestricted range of velocities 0 < v < ¢ we have that

Uy
Pz = C_gErelx (944)

and FEy;,, represents the kinetic energy for the whole range of speed.

27.4.1 The wave equation.

The wave differential equation we obtain by derivation of 1, two times versus t and

two times versus x. The results are then connected through

Uy

Pz = C—2Erezz (945)
We get
2 2
sete = 5 s (946)
For v, — ¢ we have
2 1 92
St t) = o () (947)

the well known wave equation

27.4.2 The time independent differential equation.

Time independent differential equations are deduced deriving one time and two times
the wave function v,.

a) We derive the wave function v, one time versus x and get the following time
independent differential equation on the x coordinate

L R

52V = 70 Lrels Yy = e (Eo + Ekin,) s (948)

Eyin, represents the kinetic energy for the whole range of speed, relativistic and
non-relativistic.

The equation writes for conserved systems with the potential energy U(z) as

—ih C(%?ﬁx — Ey )y + U(x) Yy = [Egin, + U(x)] ¥y = Eior Vs (949)

where F,,; is the conserved energy.
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b) We derivate the wave function v, two times versus = and get the following time
independent differential equation on the x coordinate
0? o
2= my, e (950)
With

1
Myrel, = 2\ B + Ezgz Ey = mec? and E,, =psc (951)

02 1
2T T e

(o + Bp,) ¥a (952)

27.4.3 The space independent differential equation.

We derivate the wave function v, two times versus t

o? c?
@% == ﬁ ngc (= (953)
and with
E, =p;c and Eg =E. + Egy + E2. (954)
we get
, 0 2
K @Qﬁx =E i), (955)
and for the space
— B A = B%) (956)

with the operator Ay defined in sec. 27.7.

27.5 Non relativistic differential equations

For non relativistic speeds we have that v < ¢ and that Ey;,, =~ p*/(2m,).

27.5.1 General non relativistic differential equation.

The general non relativistic differential equation we obtain by deriving 1, two times
versus ¢ and one time versus x. The results are then connected through F,., — E, =
Ein, ~ p*/(2m,). We get
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R* 02

— m @wx(l’, t) with Eo =My 62 (957)

b () — Byt f)
The differential equation with the constant energy F, describes the movement of a
non-accelerated particle in a cero potential energy field.
With E,, the total energy, Ej;, the kinetic energy, F,. the potential energy and
E,.¢ the relativistic energy, the above equation is equivalent to E,..; — E, = Eii,. If
we add at to the kinetic energy Ej;, the potential energy E, = U,(x,t) we get the

total energy Ey, for an accelerated movement. The result is

— hc%%(m,t) — By Yu(2,t) + Up(,t)thy(,t) = Eyoptha(,t) (958)
R0
B m @wx(l’,t) T Ugg(l’,t)wz(];’ t) = Etoth<x7t) (959)

In a conservative system the total energy is time independent with E},; = constant.

Comparing equation (957) with the General SchrAﬂIdinger differential equation,
the main difference is that equation (957) derives one time versus space and two times

versus time, in other words, time and space are interchanged.

27.5.2 The time independent non relativistic differential equation.

Differential equations are deduced in derivating one time or two times the wave function

(2

a) We derivate the wave function v, one time versus x

0 1 1
%¢x = h_C Erelx wx = h_C (Eo + Eklng:) %; (960)

For a conservative field U, = ¢. V, with a total energy E},, we have

1
Eiot, = Ekin, + U, and with Erin, = 5 P> (961)
me
we get
, 0
{—zhc%+U(x) }Lb(x)%Ex () (962)
with
Ecc = Etotx + Eo (963)
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the Eigenvalue.

b) For the time independent differential equation deduced derivating the wave

function v, two times versus z see sec. 27.8.

27.5.3 Space independent non relativistic differential equation.

We take two times the derivate of the wave function v, versus ¢

0? A,

and with eq. (956)

— 1 A= B2y

and v < ¢ and a conservative potential U

1 E?
Elin ~ 2 m. p2 = 5 g,o and Eipp = Epin +U

we obtain the space independent non relativistic differential equation

h2
{_QE At_f'U}qu}%Etotw

which is equivalent to the time inependent equation from Schroedinger.

27.6 Uncertainty principle.

uncertainty relations

(AE)-(Az) > - hec

N | —

and

(Ap) - (At) =

N | —
oSt

Noticeable at this point is the relation

Er,=hc

(964)

(965)

(966)

(967)

In the proposed model the pairs of canonical conjugated variables lead to the following

(968)

(969)

(970)

for a particle, that connects the radius r, and the relativistic energy E through A c.
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27.7 Operators.

27.7.1 Relativistic operator for the linear momentum.

The relativistic operator for the linear momentum of a particle is

p=i

| St

0
c Ot
The linear momentum we get with
pPx=1-Vix
c

where y is the total mass-probability function

X = ¢x ¢y %Ziz
and Vt

0 0 0
Vi= —|.e: + alyey + e

ot t‘z ©:

27.7.2 Relativistic operators for the energy.

For the relativistic energy of a non-accelerated particle we obtain the operator

- 0
B, =—ihe—
s 1 Cax

Application example.

If we apply the relativistic operators to the relativistic energy of a particle

B =mict 4 i
we get

82

o?
2 2 2 4 2
—h°c aﬁ@%:moc Ve — R BTE

Ve

the Klein-Gordon equation.
With m, = 0 we have

0? 1 o
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27.7.3 Non-relativistic operator for the kinetic energy.

The non-relativistic operator for the kinetic energy on the x coordinate is

h? 0?
2 me C2 ﬁh’

and the total kinetic energy Ey;, in the three dimensional space

Ekinz -

h2
Eiin = Egin, + Ekin, + Egin, = — Agx
v 2 m, 2
with
92 92 92
A = A5 lz Y A0z
¢ 8t2| * atQ‘y * atQ‘

27.7.4 Non-relativistic Hamilton operator.

(979)

(980)

(981)

The operator for the non-relativistic total energy on the x coordinate has the form

A 1 ho \ o -
B, = 9
* QmO(Zc 6t|x> + Vs

@
2 m,

or

x

which is equal to the Hamilton operator H,.

The general non-relativistic differential equation thus takes the form

with

~ 2
i, — L=

= U,
2 m, +

the non-relativistic Hamilton operator.

27.7.5 Non-relativistic operator for the orbital-angular-momentum.

The wave function for the three dimentional space is

+oo
wm(ryt) = i/' X(mrel) exrp {Z% [mrel r— p(mrel) t}} dmrel

21 J_ o

with
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r=xze,tye,+ze, and P=Dps€+p,e,+Dpe; (987)
We define the linear momentum operator for the different coordinates as:

T e ot”®

The orbital-angular-momentum-operator can be expressed as

h h
M <I', 1 E Vt) = <I' X 1 E Vt> (989)

~

P (988)

with
0 0 0
Vi= —|. e, — —|, e, 990
t at’ e, + atlyey + atl e ( )
The operators for the vectorcomponents are:
My=§p.—2p, My=2p,—ip. M.=2p,—9p. (991)
The conmutations are as known
(M, Mipa] 0 [M, Q1 =0 with Q= M; + M, + M? (992)

27.8 The proposed theory and the Correspondence Principle.

The present theory is based on the radius-energy relation that substitutes the de Broglie
wavelength.

The accordance of the proposed theory with the correspondence principle of quan-
tum mechanics is ensured, in that the time independent differential equation from
Schroedinger, deduced from the wave package constructed with the de Broglie wave-
length, can be derived from the wave package constructed with the radius-energy rela-
tion presented in this work.

We start derivating the wave function v, two times versus space, to get the time
independent differential equation

2 2
= = Sl (993)
With

1
Myel, = g Eg + EZQM Eo = m0C2 and pr =Pz C (994)



we get
0? 1
=T TR e

For non-relativistic velocities v < ¢ we have that

(B2 4+ E2) ¢, (995)

2

Elin, = Pa and E? =p:c? =2m, B, (996)
2 mo Pz
and we get
0? 2m, |1
@,@Z}x = - 72 |:§Eo + Ekznz:| 1/}:1: (997)

With a conservative potential Fy, = U, + Egin, we get finally

R 0?

~ 2m, 022

1
+ ch] Y, = By Y, with E, = 3 [Eo + 2 Eror, | (998)

For the three dimensional space we have

h2
[— A+ U | x=FEx (999)
2m,

with A, the Laplace operator and

1
E= 3 [E, + 2 Eio (1000)
If we make E, = 0 we get
h2
— Ar + U | x=FEit X (1001)
2m,

Eq. (1001) is exactly the time independent differential equation constructed by
Schroedinger with F,, the Eigenvalue.

27.9 The mass conservation equation.

The mass conservation differential equation we obtain by derivating ¢, one time versus

t and one time versus x. The results are then connected through

Vg

Pz = C_QErelI (1002)
We get

0

0
Eiﬂx(aj,t) = — 1, %wx(x,t) (1003)
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We define the mass probability density as

px('% t) = @ZJ;(% t) %(iﬂ» t) or p(I‘, t) = W(Fa t) ¢(r7 t) (1004)

We derive the mass probability density versus time

0

a0 0) = S 0) a0 = S0 0) Y, 0) + 020 0) 5b(a,0) (1005)

With eq. (1003) we get

0 0 0
apw@;?t) = Uy %Z/J;(l’,t) %(fyt) + @(%t) %wx(xvt) (1006)

or

9 el 1) =~ (1) Wl 0] = o e 1)) = —2-(et) (1007)

9
ot

where j(r,t) is the mass-current probability density.

(r,t) = — Vi j(r,1) with — j(r,t) = v *(r,t) ¥(r,t) (1008)

27.10 The wave equation for relativistic speeds.

We start with the wave eq. (938) from sec. 27.2

+o00 c
Xm(mrell) ETP |:7'_ (mrelz T — px(mrelz> t):| dnlrelz (1009)

1
Vel 1) = %/ n

—0o0

and analyze the equation for relativistic speeds where Av = ¢ — v < ¢. We get

mu v? h
Erel:Ep:pCZTC ﬂ: 1—0—2 )\:5 (1010)
The resulting wave equation is
1 [t i
Uz, t) = — Xo(Myer,) €xp | = (px — Epy t) | dmye, (1011)
2 J_ h
where
Ep=puv= % v (1012)



With E,q = pc/v and E} < E; we get

2 .2 2 .2
Ep=pv=b=-P2°5 ~pe=p, (1013)

Erel \/ Eg + EI%

We now derive the wave equation one time versus space and one time versus time

and connect the results with £, = pc. We get

0 0

= ot (1014)

28 Wave equations for free moving particles.

28.1 The relativistic wave equation for the free moving parti-

cle.

Until now we have worked with the wave package defined with eq. (938) where the
integration is made versus dm,..,. In what follows the wave package defined with eq.
(935) is used where the integration is made versus dp.

We start with the dispersion equations for the relativistic mass m,..;, of sec. 27.2.

In what follows we omit the sub-index x and write m,.; instead of m., .

E'I"E 1
Myel = CQl Myep = mrel(p) - 0_2 v Eg +p202 and E, = mOCQ (1015)

which can be transformed to

1 2112 ,
=1 | 2] =[] (1016)
c c c
with
/ E?
Pra=—pENPH (1017)
We also transform
2 2 Eo
p(Mye) =cy/m2, — m and Mo = — (1018)
to
L 2 471/2 .
p=-[E} —mlc'] with Ee = E, + Epin (1019)
c
and
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1 1 )
p=- [Eim +2FE, Ekm] V2 _ - [Ekm + E] (1020)
c c
with
By = —Eyin £ \/Ein + 2 Eo Ekin (1021)

Note: In what follows we changed the symbol for the wave function from ¢ to ¥
to follow the convention.
If we now introduce (1016) and (1020) in eq. ( 935 )

1 [t c
U(z,t) = %/ Ky(pz) exp {Zﬁ [Mier, (D) T — Da t]} dp, (1022)
we get
(1) o exp{,% [+ 7)o — (B + B ]} (1023)
what we can write in the form
U(z,t) < exp {% [p/x —E't } } - exp {% [px— Egin t ]} (1024)
We know that
Erel = Eo + Ekzin == Es + En (1025)
with
E?2 E?
By=—r®_ E,=——2 _  E,=pc (1026)

For relativistic speeds v > 0.95¢ we have that

E,<<E, FEu~E,~E, Eu~E, - E, (1027)

and

=0 p,=—2 E =0 E,=—2Fu, (1028)

Uz t) o exp{i%[px—Ekmt]} _ exp{:l:%[px—(En—Eo)ﬂ} (1029)



where Fy;, is the relativistic kinetic energy.

28.1.1 The wave package for the relativistic wave equation.

To get the wave package we derive (1029) one time versus space and one time versus

time.
0 i
c %wx x =+ 7D Yy (1030)
O £ pe— Bl (1031)

We now eliminate from the two equations p ¢ ¢, and get

0 0 1
E'[bm X — C 8_xwz + ﬁ EO lpz (1032)
The time independent equation is
—ihcgw =+ E, 9 (1033)
ax T T o xX
which with an potential U(z) gives
, 0
—ihec a—xwm + U(.T)l/)x = [:l: EO + Etot] ¢1~ = Ewm (1034)

If we compare it with (958) which was derived with the wave package defined with
eq. (938) where the integration is made versus dm,.;,, and which was derived as non

relativistic

iR (e t) — Bytn(et) + U (e, 0) = Bunba(e,t)  (1035)

we see that they are equal. This means that we have the same equation for non

relativistic and relativistic problems.

28.2 The slightly relativistic wave equation for the free mov-

ing particle.

For v << ¢ we have that p ~ mv

E,~ E, and E,~ E.—E, = E, (1036)

Also for v — 0 we get that
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Ekin — 0 and E —0 for v—=0 (1037)

and

p—0 and p — me for v—0 (1038)

From ( 1024 ) we get

U(a,t) o eacp{%[mcx]}-exp{%[px—Ekmt]} (1039)

where we have that the first exponent is not a function of p and Ej;,. As p = mv
from the second exponent is much smaller than mc from the first exponent, the first
exponent oscillates along the x — axis between plus and minus of its absolute value
which is one. The frequency of the oscillation of the first factor is very high compared

with the second, and the first factor can be made equal to one for all x.

U(a,t) o exp {% pa— By t ]} (1040)

With p &~ mv we also can write

2 4 6

o 1-3 ¢& 1-3:5 ¢ 4
S = 1041

B Toamt TaaemP T (1041)

Ekin ~ —

and arrive to the relativistic wave equation for a free moving particle

0 h? 02 1-3 nt o
 h =V = | — | U
"ot [ 2m Ox? 2.4 m3c? Ozt ]

If we take into consideration only the first two terms of Ej;, and introduce an

(1042)

external potential U(x), we get the following time independent wave equation for a

slightly relativistic moving charged particle in an external potential.

2m Ox? 2.4 m3c? Ozt

[W o 1'371484+U(9[;)]x1f:qu (1043)
To calculate the maximum velocity v,,q, for this case we make the third term of
eq. (1041) ten times smaller than the second term and get v, = 0.346 c. It is not
recommended to use more than two terms of eq. 1041 because of the approximations
made for the deduction.
Note: Eq. 1043 allows to calculate the solutions for QM systems which are slightly

relativistic instead of using the strong relativistic Dirac formulation.
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28.3 The non-relativistic wave equation for the free moving
particle
If we make F, = 0 because we want an equation that describes only the kinetic energy

we get p = 0 and E' = 0, and if we reduce our observation to non-relativistic speeds

with v << ¢ we have from eq. (1024)

. 1 2
U(x,t) o exp ! px— Epin t ] with Erin = = b Ekin(p) (1044)
h 2m
1 [t 1
U(x,t) = gy Kz(ps) exp ¥ [p x — Egin(p) t] p dps (1045)

The wave function derived two times versus x and one time versus ¢ gives the
differential equation of the free moving particle of mass m. If we introduce an external

potencial U we have the SchrAﬁ]dinger equation for an accelerated particle.

0 R 02
ih Elll(x,t) A [ TN + U} U(x,t) (1046)

29 Applications of the non-relativistic differential
equation

The solutions of the time independent non-relativistic differential equation (958) for a

potential pot, the harmonic oscillator and the hydrogen atom are derived.

29.1 Potential pot

The non-relativistic time independent differential equation is

Cihe D@) + Unle) () = (B + B =B () (1047)

With y = ¢, (x) we can write

d
—ihceY = [E-U)dx (1048)
Y
After integration we get
—ihc [Injyl +1InCy :/[E—U] dx (1049)
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resulting

ly| = Ciy exp{ é /[E ~ U] dx} (1050)

Equation (1050) is valid for all potential energies U and gives real values for y if

{hl/[E—U]dx}:m and k=0, +1, 42 +3 ... (1051)
c

defining the quantization condition, which together with the normalization condi-
tion allows the calculation of the eigenfunctions.

The potential pot is defined as

oo forax <0
U=<0 for0<z<a

oo forxz>a

and we have for U = 0 and a constant E because of the assumption of energy

conservation
1 . . hc
P EFErx=Fkw resulting with r = a E,=m1m—k (1052)
c a
with £ =0, &1, £2, 4+3,--- the eigenvalues Fj.
The total energy is with Ey, = E;; + E,
hc
Eyw=FE.—FE,=mn—Fk — E, (1053)
a
and for E;,; = 0 we get
h h
a, =k WE’OC =knr, with F: =r, (1054)
the radius of of a rest electron or positron.
The eigenfunction is
L ! E (1055)
=—expy — Epx
Yk c, PYge ok

The integration constant C, we get with the normalization condition

/ Y Yr dx =063 1) (1056)

For k' = k we get
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1 “ 1
2 /0 exp {ﬂ [Ey — E] x} dx =1 (1057)

resulting
1
0—5 =a or C,=+Va (1058)
The normalized eigenfunction is
Lol lE (1059)
= exr s
Yk Ja P Bk

Conclusion: The main differences compared with the solution obtained with the
Schroedinger equation is that the quantization of the energy FEj is proportional to &

instead of k% and for defined values of a the total energy F,,; becomes zero.

29.2 Harmonic oscillator

The potential energy for the harmonic oscillator is

K 2
Ulx) = - i m2w z? with — w? = K/m (1060)

With eq. (1050) we get

1 ‘ K
Y

With the quantization condition we get

1 “ K 1 K
e |, [E—E:f] dx:—{Ea—Ea?’}:/mr (1062)

resulting for the quantized energy with F,,; = E, — E,

hc 1 mw?
E,, =1 — —
ot =" [k+67rhc

a?’] ~E,=E,—E, (1063)

The minimum quantum change between two adjacent energy levels is

h
ABy = AE, =1 — (1064)
a
For E;,r = 0 we get
1 2 9
a EO—Emwa =kmhc (1065)

which for k£ = 0 gives
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6 F,
m w?

a; =0 or ass ==+ for k=0 (1066)

We get for the minimum quantum change between two adjacent energy levels

s
AFE;; =+ — hw 1067
tot \/6 ( )

The minimum quantum energy difference A F;,; between two adjacent energy levels
is proportional to Aw.

With the normalization condition given by equation (1056) we have that

o 1 > 1
/ Yy Yp dr = Yo7 exp {ﬂ [Ey — Ex] :v} dx (1068)
00 y J—o0

or

he [ , hc
/ exp{ i [Ey — Ex|ln} dn= 2
- y

2
C; Jow

x
hc
With & = k we get the integration constant Cy = Vh c resulting the normalized

eigenfunctions

1 1 K
Y= exp{ e |:Ek r— — 173] } (1070)

29.3 Hydrogen atom

We start with the deduction of the quantization conditions from eq. (958) which was
deduced for non relativistic speeds but is also valid for relativistic speeds as shown in
sec. 28.1.1.

ihe D)+ U) Ge) = (B + Bl vale) = Euna) (107

which is equivalent to

Erel + U= Eo + Ekzn + U=F Etot == Ekzn + U Erel = Eo + Ekm (1072)

We define the operator

5> o 0 0 0 -
- EFE=VE=— — — ) E=c e, e 1
\Y4 \Y% g + 3y + 7 with € + € + € (1073)
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0 0 0
E = — — — 1074
VEY(a,y,2) = 5-9(,y,2) + ayw@:,y,z) + 5 ¥(@y,2) (1074)
For polar coordinates we write
—iheVx(r,0,9) + Ux(r.0,¢) =Ex(r,0,¢) (1075)

with the V operator expressed in polar coordinates

0 2 1 0 10 1
- 4+ = Z -2 4z 1
V= or * r r sinf Oy r 060 * r cot? (1076)
The differential equation has now the form
Vi -uly="E (1077)
hc X het X

We now assume that the wave function x can be expressed as a product of a function

exclusively of the distance r and a function of the angular variables 6 and .

x(r,0,¢0) = R(r) Y(0,¢) (1078)
We get
d R- Y—|— AY - R+—U R-Y = —E R-Y (1079)
ar " he  he
with the operator A
1 0 0
A= — — 2 1
s 95 + 50 + 2 cotd (1080)
We now assume that
AY = -)\Y (1081)

and get two separate differential equations for R(r) and Y (0, ¢).

d 1
—R—-——[F-U|R 4—-ANR=0 1082
SR (B U] R+ [4- )] (1052)
and
1 0 0
2 cotf|Y =-)\Y 1
Lm@ 99 t g T 200 } (1083)

After multiplying Eq. (1082) with dr/R and integrating we get

lnR—hC/ [E—Uldr —[4— \In— (1084)

Ty
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where r, and r are arbitrary integrating limits that will be defined later on.
From the solution of eq. (1083) results that A =il with [ = 0, £1, £2;--- as will
be shown later at sec. 29.3.2. We get

R= exp{—él mL} ea;p{i [/ (E—U)dr+1he 1n1” (1085)
Tu hell,, Tu

The quantization condition requires that

1 T
h—CU (E—U)dthclnﬂ:m with k= 0, £1, £2;-- (1086)

Equation (1086) is valid for all point symmetrical potentials U. We now introduce
the potential of an atomic nucleus

62

K
U= —2Z=% with K, (1087)
T

s €o
Note: According to the focal-point approach, nuclei are composed of electrons
and positrons that neither attract nor repel each other for the distance between them
tending to zero.
If N, are the number of positrons and N, the number of electrons which constitute

the nucleus we have that

Z=N, — N, (1088)

For the hydrogen it is N, = 919 and N, = 918.

For energy conservation conditions we have that

/T Edr=FE (r—rm,) (1089)

Tu

with the value F a constant. We get

1
E:[kzwhc—(ZKqulhc) In— (1090)
| T—Ty
In eq. (1090) the terms represent E = Ej, + U + E; where
_ knh _ Z K, _ LR
Bo=—"T"% g=— n—  B=- "%l (1091)
r—Tu r—Ty Ty T—Ty Ty

To arrive to the Balmer equation for the hydrogen atom the following steps are
necessary.
Step one:

The term that describes the potential energy
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7K Ze 1
= 2C In — (1092)

r—"Ty Tu AT e, 1 — Ty Ty

0——
gives the potential energy U for an orbital electron and Z charges et at the atomic

nucleus.
We now assume, that the orbital electron can interact with n, positrons of the IV,

positrons of the nucleus, where n, >= Z.

2
1
lp © r (1093)

U, =- In —
AT €, T — Ty T

The concept is shown in Fig. 142

Figure 142: Orbital electron with n, = 3.

Step two:
As the radius r' of an atom is constant, the potential energy is constant for all

number n, of positrons the orbital electron can interact. We can write

_ 21 K,
U,=—K, 2 @ —-- % -~ _ ny, >=7 (1094)
r—"Ty Tu AT e, T r
We get that
1 1 /
In— = i r = constant (1095)
T—"Ty Ty NpT
Step three:

From eq. (1092) we get
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K K
L= g (1096)

T —Ty Tu np T

U=-7

If we now assume that the quantization of the charges of the nucleus which interact

with the orbital electron follows the rule n, = n?, we get for the energy levels

K,
: n=1,2 3,--- n, =n’ (1097)

U=-2Z
n?r

The energy levels of the orbital electron have their origin in the number of positrons
n, of the nucleus with which they interact. The number is given by the quantum

number n. We have for

n=1,2 3, 4 respectively n,=1, 4,9, 16 (1098)
The difference between energy levels is
_ K, 1 1
ANU=7 """ | = — —— An=0,1, 2, - 1099
r Lﬂ (n + An)Ql e S ( )
For An =1 we get
_ K 1 1
AU=7—"F | = - —— 1100
r’ {nQ (n+ 1)2} ( )

which for Z = 1 is equal to Balmers spectroscopic equation for the hydrogen, namely

1 1 1

with Ry the Rydberg constant and n =1, 2,......
From the two equations (1100) and (1101) for the potential energy we get
K, / K,

2 —heR = =1.05811-107" 1102
hy Ot T Ry, " (1102)

The relation between the mean distance 75, and the Bohr radius a, is

ry=2a,=1.05811-1071" m (1103)

We conclude, that the potential levels of the orbital electron at the hydrogen atom
have their origin in the number of positrons of the nucleus that interact with the
orbital electron. From the 919 positrons of the hydrogen nucleus, at each potential
level n, = n* interact with the orbital electron.

The proposed approach ¢ Emission & Regeneration” UFT is based on focal-point
representation of subatomic particles. Electrons and positrons are represented as focal-

points of rays of Fundamental Particles (FPs) that move from infinite to infinite with
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light speed or infinite speed. A focal-point emits FPs with light speed and is regener-
ated by FPs with infinite speed and vice-versa. There are two types of electrons and
positrons according they emit FPs with light (deccelerating=dec) or with infinite (ac-
celerating=acc) speed. Acceleration or deceleration refers to the speed of the outgoing

FPs relative to the incoming FPs at the focal-point. Lets call them

e acct positron that emits FPs with infinite speed
e dect positron that emits FPs with light speed
e acc™ electron that emits FPs with infinite speed

e dec™ electron that emits FPs with light speed

In the proposed approach electrons and positrons don’t have an intrinsic spin. The
spin has its origin in a circular movement of the focal point on the orbit of the electron
similar to the movement of an epysicle. See sec. 30.2.

The infinite speed for FPS is a requirement that comes from the need that subatomic
particles must be regenerated immediately after having emitted FPs. The infinite speed
also explains entanglement.

Regenerating FPs of subatomic particles are those FPs that have been emitted pre-
viously by other subatomic particles. All existing electrons and positrons are connected

through their rays of emitted and regenerating FPs.

29.3.1 Generalization of the procedure to derive the splitting of the energy

levels

From the previous steps required to derive the splitting of the potential energy, we now
establish the general rule to derive the splitting of the energies of the orbital electrons.
The rule is as follows:
With a term of the type

In =
B=A —" (1104)
r—"7Ty

where r and 7, are arbitrary integration limits, we can build an equation with a

constant radius 7 of the type

: - A In = 1
B, =Ay — = what gives — = (1105)
r—"ry T =Ty YT
If we introduced the result in eq. 1104 we get
In = A
B=A—™" =— (1106)



We start applying the rule to the term of the potential energy to show that we
arrive to the same eq. (1097) which led to the Balmer equation. We start with

_ In -
U=-K, —~ (1107)
r—Ty

We introduce to the equation the factor ¥ = n? and impose that it must be equal
to K,/r".

In = K In = 1

U =-K,n>—™ =_% what gives T = 7 7 (1108)
r—r, r r—ry, n2r
and with eq. (1107)
_ K,
U=— 1109
Ko (1109)

which is equal to eq. (1097) which led us to the Balmer equation except for the
factor Z.

Now we calculate the splitting of the energy also for the orbital angular momentum
quantum number /.

We start with

n
E=K, —" (1110)

and with eq. (1090) with a potential n, >= Z

/

E =

km In =~
—n, K, — — T 1111
n, K, —lhc + ln%hc] p— (1111)

and apply the rule to eq. (1111) that we can write with K, = a h ¢

/ { k In -~ K,
E =K, [—np—— + WT] = — K,=ahc (1112)
« o In | r—ry r
with o = ﬁ the fine-structure constant.
We get
In = 1
Tw  — (1113)
T e o]
and with eq. 1110 we get that
K,
E = (1114)
rl |:—’I’Lp - é + « lfnﬂi:|



and with n, = n? we get

E= — (1115)
AT
If we make k = 0 we get
/ Ku Ku
E = _ = _ 1116
N2+ lat] ' [n?+1371] ( )
With [ = 0 we get again Balmers equation
Now we calculate In % from eq. 1085
R(r) = exp (—4 In L) k=0,41,42 - (1117)
Tu

For the hydrogen atom it is R = 7y = 2 a, = 1.06 - 107 m we get In = = 5.74

what gives

2 1
—W=0.547k;z§k k=0,41,42,-- (1118)

In =
Tu

We see that the total orbital angular momentum quantum number is

1
J=1H 05Tk & U ok with  k=0,£1,42,43, (1119)

The spectroscopic energy is given by

K 1 1

AE =t 1 : - : . (1120)
T 2 1 T ’r9 1 / T
[n + a (l + In(r ru))i| [n + @ (l + ln(r/ru))i|
where
1 /
In(r/r,) = — =InR(r) with R(r) =r the atomic radius (1121)

4

As electrons repel each other they place themselves as far as possible on the orbit.
The orbit can be occupied only by two electrons which are placed at the opposite
sides of the diameter of the orbit, which is now characterized by the quantum number
k = +1 . This quantum number replaces the fictitious spin s = +1/2. The Pauli

principle refers now to the following quantum numbers n, [, m;, k which cannot be
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all equal for two orbital electrons.

Configuration of electrons

n 1 ml k Electr. per shell
1 0 0 +1 2
2 0 0 +1 2
1, 0, —1 +1 6
3 0 0 +1 2
1, 0, —1 +1 6
2 2,1, 0, =1, =2 +£1 10

Note: The present approach gives the principal quantum number a physical inter-

pretation, namely, the number of positrons n, that interact with the orbital electron.

29.3.2 Deduction of the condition \ =1 (.

Now we deduce the condition A = i [ introduced previously in eq. (1083).

1 0 0
— — 2 Y =-)\Y
Snd 9y + 2 + 2 cotf A
We assume that
d
Y (6,9) =0(0) () and @Cb =m o

and with ®(¢) = ®(p + 27) we get

O = exp{m ¢} with m=1imy and my = +0, +£1, +2;---

With eq. (1123) we have that eq. (1083) transforms to

m d

g~ @—i-@@ 4+ 2cot0®@=—-)10O
and

de® m

6__[Sin9+2COt0+)\] do
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(1123)

(1124)

(1125)

(1126)



which gives the solution

1 z'ml
= — — 2 112
© o ea:p{ /[sin@ + cot@—i—)\}de} (1127)

With ©(0) = ©(0 + 27) we conclude that

1
O = o exp{—2Insinf} exp{—i [ myIn(csch —cotd) + 160]} (1128)
Q)

with A =7l and [ = 40, +1, £2;--- what we have anticipated for eq. (1085).

Eq.( 1125) we can now write as

d .oy
@@ + ZsinQ

In this equation the real and the imaginary terms must be equal, and we get from

© = —-—2cotlO — ilO (1129)
the imaginary terms that

? = —sinf with my =0, £1, £2;--- and [ =210, £1, £2;--- (1130)

We conclude, that the relation between the orbital quantum number [ and the
magnetic quantum number m; is
my . .
‘T‘:|—sm9|§1 or |my| < | —1Isinb)| (1131)
m; is the projection of [ on the x — y plane and gives the projection of the orbital

area A = 7 [? on the z — y axis.

Apy =7mi = (I sinh)? my <1 (1132)

A, is the part of the orbital area perpendicular to the z — azis. The z — axis

defines the magnetic flux ® for an external magnetic field in z direction.

d=B,-A ®=DB,A, (1133)

An unbound orbital electron is always forced by an external magnetic field B, to
move in a plane perpendicular to the z axis.

An inhomogeneous magnetic field B,, generates a force in the z direction on an
unbound orbital electron.

| 5 -

e w
FZ: n : —
(2 0T,

B. n=TIAcos = —= 1134
) m cos 5 (1134)
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This force is measured in the Stern-Gerlach experiment. The standard model asso-
ciates an angular momentum to the magnetic field of an orbiting electron. As unbound
orbital electrons have no angular momentum, a fictitious angular momentum (spin)
was postulated.

The energy splitting in a magnetic field is given by

AFE =g, m up B, (1135)

with ¢; the Lande factor, m; the quantum number projection of angular momentum,

g the Bohr magneton, and B, the magnetic flux density.

Conclusions: The present approach is based on the “E & R “ model, where
nucleons are composed of electrons and positrons that neither attract nor repel each
other when the distance between them tends to zero. A nucleon can polarize, so that
an orbital electron can interact during a short time with more than one positron of the
nucleon. In the case of the hydrogen, the orbital electron can be attracted during a
short time by two or more positrons of the proton defining the higher energy levels for
the orbital electron.

As nucleons are composed of electrons and positrons, also quarks are composed
of electrons and positrons. The fractional charges of quarks are simply the relation
between the number of electrons or positrons that integrate the quark, to the total
number of electrons and positrons that compose the quark. No fractional charges
exist.

The electron shells of atoms is the result of the accommodation of the electrons
and positrons of the atomic nuclei in the quarks. The combination principle used in

spectroscopy becomes with the “E & R “ model a physical interpretation.

29.4 Helium atom.

Fig. 143 shows the Helium atom where one orbital electron interacts with n; positrons
and the other with ny positrons of the nucleus.

The potential energy of the excited system is given by

Eye=E, + By, + B9 (1136)
where
1 1
E, =K, — — (1137)
He n
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Figure 143: Energy levels at an excited helium atom.

1 1
E,, =K, — 5 (1138)
The T
K,
Eio=— (1139)
2ry.n

Note: The present approach explains energy levels with:

e the number n, of positrons of the nucleus that interact with the orbital electron.

e the quantization of radii of orbital electrons expressed with © = v'(n, 1, m, k).

The last explains the energy quantization at the positronium where n, = n, = 1.
The general explanation is given by the interaction between FPs emitted by external
nuclei and orbital electrons, and the own emitted FPs. The quantization of energy levels

is finally reduced to the quantization of the energy of each FP.

Erp=huvpp with Vpp a universal constant (1140)
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Part IX Miscellaneous 111

30 Splitting of atoms and energy levels.

The present approach gives different interpretations for the splitting of atoms at the

Stern-Gerlach experiment and the splitting of energy levels at the hydrogen atom.

30.1 Splitting of atoms in the Stern-Gerlach experiment.

To explain the splitting of the atomic ray in the Stern-Gerlach experiment, electrons
were assigned an intrinsic spin with a quantized magnetic field that takes two positions,
up and down relative to an external magnetic field, although it is not possible to explain
how the intrinsic spin and magnetic field are generated. Measurements with individual
electrons to detect the magnetic spin are fruitless because of the strong Lorenz force.

Classical physics associates to an orbital electron an angular moment and a mag-
netic moment /i

°T (1141)

i=1A=—
a 2m,

An external field B generates a potential magnetic energy E,, and an angular
moment D
d -

o= —jiB D=jixB=—I (1142)

E
dt

p

If the angular moment [ = 0 we have that =0, E, =0and D=0.

Unbound orbital electrons have in quantum mechanics angular moment ['= 0 what
would give an magnetic moment ;i = 0 and make impossible to explain the splitting of
the neutral atom in the Stern-Gerlach experiment. To solve the problem, an intrinsic
spin § was postulated for the electron with an operator with an eigenstate of the
z component of the spin operator with the projection quantum number m, = j:%h

parallel to the external field B. The magnetic moment then becomes

eh
2me,

~
—

Hs = gs UB

with pUp = — (1143)

St »y>

The postulate of an intrinsic spin makes the magnetic moment i independent of
the existence of the angular moment [ of the orbital electron and the Stern-Gerlach
experiment can be explained.

For the standard model the unbound orbital electron has no angular orbital moment

and the generated magnetic field takes the direction of maximum compensation of the
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external magnetic field. This field is opposed to the external magnetic field what is
expressed with the projection quantum number m; = £1/2.

The proposed approach has no unbound orbital electrons because atomic nuclei are
composed of electrons and positrons that move with the orbital electron and generate
an angular moment [ # 0.

Fig: 144 shows the generation of the magnetic field d H,, independent of the angular
moment [ of an orbital electron.

The concept is shown in Fig: 144

dH

m e—

a)

Nucleus  Swarm of electrons
and positrons

g
=%l

Charge in nucleus moving Bar magnet

synchronous with orbit electron

Figure 144: Magnetic field dH,, of an orbital electron.

The approach E&R UFT shows that electrons and positrons coexist in nucleons
without repelling or attracting each other. They can be seen as swarms of electrons
and positrons forming the nucleon. As nuclei are composed of nucleons they are also
composed of electrons and positrons as shown in Fig. 144 a).

The charge @ of a nucleus is replaced by the expression An = nt —n~ which gives
the difference between the constituent numbers of electrons and positrons that form
the nucleus. As the n; are integer numbers, the Charge of the nucleus is quantified.

As examples we have for the proton nt = 919 and n~ = 918 with a binding Energy
of Ep,,, = —6.9489- 107" J = —0.43371 MeV, and for the neutron n* = 919 and
n~ = 919 with a binding Energy of Ep, ., = 5.59743 - 10711 J = 0.34936 MeV .

The dH, field is generated by the orbital electron and the interacting positron of

the nucleus that follows the orbital electron. The two opposed currents generate a dH,
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field equal to the field of a bar magnet as shown in Fig. 144 b).
The neutral atoms used in the Stern-Gerlach experiment have all complete shells
plus one electron of the next shell, which is not unbound, because it interacts with one

positron of the nucleus which follows him. The configuration of the Ag is [K7|4d'5s!.

30.2 The splitting of energy levels at the hydrogen atom.

The proposed approach represents electrons and positrons as focal points of rays of FPs
that move from infinite to infinite with light speed and infinite speed. FPs are emitted
by focal points and at the same time, FPs emitted by other focal points regenerate
them. Focal points that emit FPS with light speed are regenerated by FPs with infinite
speed and vice versa. At the focal point the speed of the FPs changes.

We start with (1115)

K,
EF= — (1144)
T, |:n2+é + allcnﬂ—i]
with
2
= K,=ah 114
Y drme, wmane ( 5)

The energy F is defined by three quantum numbers, namely n, [ and k. The term
in the denominator that is associated with the intrinsic spin of the orbital electron,

namely

km

alnt
T

u

1 47 € 1
— k= he=k k=041, +£2 +3. --- 1146
2 62 62 07 ) ) ) ( )

1
o

is a function of the product of the charge of the hydrogen nucleus e and the charge
of the orbital electron e, and a function of the integration limits  and r,, what shows,
that the above term is not the product of an intrinsic spin of the orbital electron. It is
given by the interaction between nucleus and orbital electron, the same as the orbital

angular momentum.

31 Radiation of accelerated particles.

Experience shows that all accelerated charged particles emit energy as electromagnetic
radiation. The stability of orbital electrons, which are radially accelerated, is explained

with the quantization of the energy levels of orbital electrons.
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The present approach explains the origin of energy levels of orbital electrons with
the number of positrons of the nucleus that interact with the orbital electron. In
other words, the linear superposition of potential fields of positrons, leaving open the
question of stability of the radially accelerated orbital electrons.

The E&R model represents subatomic particles (SPs) as focal points of rays of
Fundamental Particles (FPs) that move from infinity to infinity. FPs have longitudinal
and transversal angular momenta where the energy of the SP is stored. FPs are emitted
by the focal point and at the same time regenerate the focal point. Regenerating FPs
are those FPs that were emitted previously by external subatomic particles. Because
of the energy conservation principle, the current of emitted FPs must be equal to the
current of regenerating FPs. SPs interact through the cross product of the angular
momenta of their FPs.

The regenerating FPs of a SP are activated by their emitted FPs when they arrive
to external SPs. There is a time delay between the emitted FP and the arrival of the
regenerating FP that was activated by the first. The emitted FP takes with it the
information of the location of the focal point from which it was emitted. The informa-
tion is stored in the direction of the longitudinal angular momenta. This information
is transmitted to the regenerating FP when activated, and allows that the regenerating
FP meets the focal point.

At SPs that are at rest or move with constant speed, the externally activated
regenerating FPs meet the focal point. At SPs that are accelerated, the externally
activated regenerating FPs fail the focal point, because of the acceleration during the
time delay. The regenerating FPs that fail the focal point move then independent from
the focal point as radiated photons or neutrinos.

In the case of the orbital electron with its radial acceleration, the regenerating FPs
don’t fail the electron because of the small radius of the orbit. It is equivalent to a
resting electron for all external SPs where the regenerating FPs are activated. Because
of the small energy of the orbital electron the uncertainty principle between energy and

space includes the orbit of the electron.

(AE) - (Az) > % he (1147)

Example: The energy of the orbital electron of the hydrogen atom with [ = 0 is
E. = 3.4250 - 10~ J which gives an uncertainty of Az = 4.6182 - 10~? m which is
grater than the diameter of the atom with approximately 2 a, = 1.0584 - 1071 m.
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32 Stable and unstable particles.

Particles in the SM are classified as Gauge Bosons, Leptons, Quarks, Baryons and
Mesons. The classification makes no difference between stable and unstable particles.
Unstable particles with energies much grater than the energies of the stable electron
(0.511 MeV/c?), positron or neutrino are defined as Basic Subatomic Particles (BSPs),
violating the concept of basic particles which must be the constituents of all not basic
particles. The result is the search for basic particles like the unstable Quarks with
energies above 0.35 GeV/c?.
The approach “Emission and Regeneration” UFT

1. defines as BSPs the electron, positron and the neutrino which are stable particles,
and defines all particles with higher energies, stable or unstable, as Composed
Subatomic Particles (CSPs) which are integrated by BSPs.

2. defines electrons and positrons as focal points of rays of Fundamental Particles
(FPs) which go from infinite to infinite and have longitudinal and transversal
angular momenta. Interactions between electrons and positrons are the result
of the interactions of the angular momenta of their FPs. No carrier bosons are

required to describe interactions between subatomic particles.

3. defines neutrinos as pairs of FPs with opposed angular momenta which generate
linear momenta, and photons as a sequence of pairs of FPs with opposed angular

momenta that generate a sequence of opposed linear momenta.

4. shows that no strong forces are required to hold electrons and positrons together,
which are the constituents of protons and neutrons. The forces between the
constituents electrons and positrons tend to zero for the distance between them

tending to zero.

5. shows that weak forces which are responsible for the decay of atomic nuclei are

electromagnetic forces.

6. shows that gravitation forces are also electromagnetic forces.

The conclusion is, that all interactions between subatomic particles are electromag-
netic interactions and described by QED. Interactions as described by QCD are simply
the product of the primitive definition of particles as point-like entities which require

carriers to explain their interactions.
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32.1 The potentials of the four interactions.

Our SM differentiates between the following potentials to explain interactions between

particles.

e Strong
o Weak
e Gravitation

e Electromagnetic

In sec. 4 the momentum curve between two static charged BSAs (electron/positron)

was derived resulting Fig. 145 and the following regions were defined:

1. From 0 < 7 < 0.1 where pgq =0

2. From 0.1 < v < 1.8 where pgqr o d?

3. From 1.8 < v <« 2.1 where pgq. ~ constant
4. From 2.1 < v < 518 where pgyqr X é

5. From 518 < v < oo where pgyqr d% (Coulomb)

The static momentum curve of Fig. 145 is part of the potential well of an atomic
nucleus as shown in Fig. 146, which can be approximated by a piecewise constant
potential for the analytical analysis in quantum mechanics.

The force on electrons or positrons that move in the defined regions of the potential

well is given by the following equations derived in sec. 7:

— 1 d [ -
dF;, = . /My 7o, TOL pr /rr dH, with (1148)
d [ - 1 d o o . B
7 5 dH, = 5 a[Hn] :—r sinpdp s, — H,v :—3 sinp cos dp 5, (1149)
1 , dry _
§Hn —r sin ¢ dgoﬁ 5y

For the regions we have that:

e BSPs that are in region 1 don’t attract nor repel each other. The static force is

zero and no binding Gluons nor strong forces to hold them together are needed.
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Figure 145: Linear momentum pg,, as function of v = d/r, between two static
BSPs with equal radii r,, = 7,

e BSPs that have migrated slowly from region 1 to region 2 where the potential
groves approximately with d?, are accelerated to or away from the potential wall
by the static force according the charge of the particle and the charge of the

remaining particles in region 1. We can differentiate between:

— BSPs that are accelerated away from the potential wall (region 3) induce on
BSPs of other atoms the gravitation force. The accelerated BSPs transmit
their acquired momentum to BSPs of other atoms (induction) and stop their

movement immediately according the conservation law of momentum. The

I 1 d dv

force on accelerated BSPs is given with % [H,] = \/m%.
— BSPs that are accelerated to the potential wall may tunnel the wall what
results in the decay of the atom with the corresponding radiations. No

special weak force is required.

e BSPs in the region 5 where the Coulomb force exists, orbit around the atom

nucleus. This is called in the SM the electromagnetic force.

The “Emission & Regeneration” UFT approach shows that all forces are derived
from one Field, the dH field. It also shows that all interactions are of electromagnetic

type and described by QEDs (Quantum Electrodynamics) and that no other type of
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Figure 146: Potential well of an atom.

interactions are required. It shows that all particles are composed of electrons, positrons

and neutrinos and that particles of very short lifetime are composed particles.
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33 Compatibility of gravitation with Quantum me-

chanics.

The potential in which an orbital electron in an Hidrogen atom with Z = 1 moves is

Z e\ 1 1
U(r)cou = — ( . ) = =23072-107* - J  with Z=1 (1150)

4me, ) r T

We know from [5] page 178 that the discrete energy levels for the orbital electron
of the H-atom is

Encou = = 2h? \4me, n? n?

Ze2\? 1 1
S ( e) — =2.1819-1078 — J (1151)

The difference between the energy levels is

11
AE,,,,B =21819-107'® l—z — —2} J (1152)

33.1 Quantized gravitation.

In the present approach of “Emission & Regeneration” UFT gravitation is presented
based on the reintegration of migrated electrons and positrons to their nuclei. Ac-
cording to that model the force on one electron/positron of a mass M; due to the

reintegration of an electron/positron to an atomic nucleus of a mass M, is given by

d k
g kevmymy // with // — 24662  (1153)
At 4 K d2 Induction Induction

and the corresponding potential is

kcym /m 1 1
U(r)Gra = <2.4662 %) - = 23071 1077 ~J (1154)

If we write the Schroedinger equation with the gravitation potential instead of the
Coulomb potential for the H-atom, we get discrete energy levels simply in replacing

the expression in brackets of eq.(1151) with the expression in brackets of eq. (1154)

m kevm m,\ 1 s 1

In the same model of gravitation the number of reintegrating electrons/positrons
for a mass M is derived as AG = yg M with vg = 5.3779 - 10® kg~'. The resulting

energy level due to all reintegrating electrons/positrons of M; and My is
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E

NGrav tot

1
=2.1816-107"° AGy AGy — J (1156)
n

For the H-Atom M5 is formed by one proton composed of 918 electrons and 919
positrons and M; is the mass of the electron. The mass of a proton is My = my.o =
1.6726 - 10727 kg and the mass of the electron M; = mejee = 9.1094 - 10731 kg . We get
AG5 = 8.9951 - 1071 and AG; = 4.8989 - 10722, We get for the energy difference for

orbital electrons at the H-Atom due to gravitation potential

11
AE,, . =96134-10""" [—2 - —2} J (1157)
ny  ny

If we compare the factors of the brackets for the energy difference due to the
Coulomb potential of eq. (1152) and the gravitational potential of eq. (1157), we
see that even between very different energy levels ny; and nsy of the gravitational levels
the energy differences of the gravitation are neglectible compared with the Coulomb.

For the energy difference between two levels n; and ns of an atom we can write:

1 1
AEnooul:i:AEnan = h(l/:i:Al/) = 2181910718 [1 + AGl AGQ] [ﬁ - ﬁ} J (1158)
1 2

with AG = g M where vg = 5.3779 - 108 kg™ .

Now we make the same calculations for the difference between the energy levels
due to the gravitation potential of the sun with M, = M, = 1.9891 - 10%° kg and
the earth with M; = M; = 5.9736 - 10** kg. We we get Ag, = 1.0697 - 10% and
Ag, = 3.2125 - 1033 resulting

AFE

no,t 2

= 7.4968 - 10°* F - %1 J (1159)
ny  ny

As the earth shows no quantization in its orbit around the sun, two adjacent levels
ny and ny must be very large outer levels so that AE, . ~ 0, similar to the large
outer levels of the conducting electrons of conducting materials. Mathematically we

can write with no = n; + 1

1 1
lim AE, . =74968-10"* | = ————| =0 J 1160
i A Eoe (1160)

33.2 Relation between energy levels and space.

The compatibility of gravitation as the reintegration of migrated electrons/positrons
to their nuclei is also shown by the following calculations. From eq. (1156) we get the

energy difference between two gravitation levels
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AFE

NGrav

2 2
ni ny

=2.1816 - 10718 AG; AG, [i — i] J (1161)

and with the difference between two gravitation potentials at different distances

1 1
AUGT(w - G Ml M2 |:— - —:| J (1162)

r1 T2

we can write that AFE

NGrav

= AUgrav What gives with r; 7y ~ r?

C10-18 A2
Ar  2.1816-107'% 12 {1 1} (1163)

[ R FT R
For the H-atom with r ~ 107 m we get for the difference between the two first

energy levels ny =1 and ny = 2

Ar =

2.1816 - 10718 ~2 3
16 2 H =7.0926-10""" m (1164)
G 4
what is a reasonable result because Ar << r.

Now we make the same calculations for the earth and the sun with r¢ + ~ 150.00 -
10° m. We get

1 1
Arg i = 2.1164 - 10% {n—% - n_g} (1165)

As the earth shows no quantization in its orbit around the sun, two adjacent levels
ni and ny must be very large outer levels so that Arg + =~ 0, similar to the large outer

levels of the conducting electrons of conducting materials.

33.3 Superposition of gravitation and Coulomb forces.

The “Emission & Regeneration” UFT shows that the Coulomb and the Ampere forces
tend to zero for the distance between electrons/positrons tending to zero. The be-
haviour is explained with the cross product of the angular momenta of the regenerating
rays of FPs that tends to zero.

The induction force is not a function of the cross product but simply the prod-
uct between angular momenta of the regenerating rays of FPs. The result is that the
induction force does not tend to zero with the distance between inducing particles
tending to zero. As the gravitation was defined as the reintegration of migrated elec-
trons/positrons to their nuclei and as a induction force, the gravitation force prevails
over the Coulomb or Ampere forces for the distance tending to zero.

Fig. 147 shows qualitatively the resulting momentum due to Coulomb/Ampere and

Gravitation momenta between an atomic nucleus of a target and a He nucleus.
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Figure 147: Resulting linear momentum p due to Coulomb/Ampere and Gravitation
momenta.

Note: The gravitation model of “Emission & Regeneration” UFT is based on a
physical approach of reintegration of migrated electrons/positrons to their nuclei and
compatible with quantum mechanics, while General Relativity, the gravitation model of
the SM, based on a mathematical-geometric approach is not compatible with quantum

mechanics.

34 Table comparing the SM and the ’E & R’ model.
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Figure 148: Table comparing the SM and the 'E & R’ model.

Fig. 148 shows the SM and the 'E & R’ model subdivided in classical physics and
QM. The classic part of the SM with its point-like representation of particles has four

force-carriers, four fields and four interactions. QM based on the classical physics of

the SM has correspondingly four gauge theories.

The classic part of the 'E & R’ model with its focal-point representation of particles

has only one type of force-carrier, only one field and only one type of interaction. QM

based on the classical physics of the 'E & R’ model has correspondingly only one type

of gauge theory, namely QED.
The SM has four fields one for each type of force while the 'E & R’ model has only
one field for all forces and is therfore a UFT.
The SM is a poly-particle model while the 'E & R’ model is a mono-particle model.
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35 Spin, magnetic moment and photon.

35.1 The spin.

According the E&R model, electrons and positrons are composed of Fundamental Par-

ticles (FPs) which have an energy defined by

Epp = hv, (1166)

with v, a universal frequency.

The energy of an electron or positron can thus be expressed as

E. VE:+E: B, +E,
E. =N, Epp N, = = p_ Dot (1167)
EFP EFP EFP

where N, is the number of FPs that composes the electron or positron. For the non

relativistic case we have

E. E,+E, 1
Erp Erp Erp

An orbital electron interacts with the nucleus and has an orbital moment given by

N, = [E, + pc] (1168)

Erp E. Erp

L:mepvt:pvt]\fe7 m€:§: e 3 (1169)

where p is the radius of the orbit and v; the tangential speed.
As the nucleus of the atom is also composed of electrons and positrons which are
composed of FPs, the orbital electron can pass or receive FPs from the nucleus. The

number of FPs of the orbital electron can thus vary between

N=N, £ AN, with AN,=0, 1,2, 3, (1170)

We get for the total angular moment of an orbital electron for the case of N =
N, £ 1

J=mepxt,=—[N.h + h) pxt,=L + § (1171)

where L is the orbital angular moment and S is the spin of the electron.
The quantum number AN, =0, 1, 2, 3,--- gives the number of FPs at which the
orbital electron is increased or decreased.
Equation (1171) includes the relativistic mass increase due to the definition of the
mass as
E. Erp h v,

me = — = N, = N,
c2 c? c2

(1172)
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Note: According to the shell structure of the Ag atom the individual electron
carries no angular momentum and L = 0. That is because there is no moment of
inertia and that the area vector of the orbit aligns immediately parallel to the external
magnetic field. According to the E&R model the energy variation at the electrons is
due to the variation of the number of FPs given by +£AN,.. For the special case of
L=0 only a variation —AN, is possible. The variation of the number of FPs produces
a variation of the mass of the electron and consequently a variation of the kinetic
energy.

The splitting of the energy level is the product of the interactions between sub-
atomic particles. There is no need to introduce the postulate of S.Goudsmit and
G.E.Uhlenbeck.

35.2 The magnetic moment.

The energy of FPs are stored in the angular momentum h what generates a magnetic
momentum in an external magnetic field.

The charge qrpp and the mass mgp of a FP is given with

€ Erp Me Erp
- _ =—=m, 1173
qrp N, € E. mrp N, m L. ( )
The magnetic moment of a FP is defined as
— qrp 7 Ne qrp - e »
HEp Qme 2Ne mpgpp 2me He ( )
where fig is the Bohr magneton.
The potential magnetic energy is defined as
Hpay = — i B (1175)
with
B I
H=—4 B 7 (1176)

where [ is the orbital angular moment.

35.3 The photon.

The photon is defined in the E&R model as a sequence of FPs with opposed angular

momenta. The energy of a photon expressed as a function of the energy of a FP is
Eph = Nph EFP EFP =h V, (1177)
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where Np, is the number of FPs that integrates the photon. With E,, = h v we
get

v c
Ny = — =
P
v, AU,

If we take the Hyperfine-shift of v = 1.42 M Hz. for n = 1 between F' = 1 and
F =0 as caused by one FP, so that v, = 1.42 M H~z., we get that the energy of a FP is

vA=c¢ (1178)

Erp=huv,=588-10""eV  with v,=142MHz (1179)

36 Summery of main characteristics and conclu-

sions of the proposed model.

The following abbreviations are used:

1. Basic Subatomic Particles (BSPs) are electrons, positrons and neutrinos.
2. Subatomic Particles (SPs)

3. Fundamental Particles (FPs)

The main characteristics of the proposed model are:

e Subatomic particles (SPs) are represented as focal points of rays of Fundamental
Particles (FPs) that go from infinite to infinite. FPs store the energy of the SPs

as rotation defining longitudinal and transversal angular momenta.

e F'Ps are emitted at the focal point and regenerate the focal point. Regenerating

FPs are the FPs that were emitted by other focal points in space.

e The charge of a SP is defined by the rotation sense of the longitudinal angular

momenta of the emitted FPs.

e The interacting particles for all types of interactions (electromagnetic, strong,
weak, gravitation) are the FPs with their longitudinal and transversal angular

momenta.

e All known forces are derived from one vector field generated by the longitudinal

and transversal angular momenta of fundamental particles.

e All the basic laws of physics (Coulomb, Ampere, Lorentz, Maxwell, Gravitation,
bending of particles and interference of photons, Bragg, Schroedinger) are math-
ematically derived from the proposed model, making sure that the approach is

in accordance with experimental data.
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Electrons and positrons neither attract nor repel each other for the distance
between them tending to zero. Nucleons are interpreted as swarms of electrons

and positrons.

The coexistence of protons in the atomic nucleus does not require the definition

of a special strong force nor additional mediating particles (gluons).

Quarks are composed of electrons and positrons and the charge Q is the relation
between the difference of positrons and electrons of the quark and the total

number of electrons and positrons. Q is the relative charge of the quark.

The emission of particles from a heavy atomic nucleus does not require the defi-

nition of a special weak force nor additional mediating particles.

Gravitation has its origin in the linear momenta induced by the reintegration of
migrated electrons and positrons to their nuclei. No special mediating particles

are required (gravitons).

The gravitation force is composed of an induced Newton component and an Am-
pere component due to parallel currents of reintegrating electrons and positrons.
For galactic distances the induced component can be neglected. A positive Am-
pere component explains the flattening of galaxies’ rotation curve (no dark matter
is required) and a negative Ampere component explains the expansion of galaxies

(no dark energy is required).

The inertia of particles is explained with the time delay between the emission

and the regeneration of FPs. No special mediating particles are required.

Permanent magnets are explained with the synchronization along a closed path

of reintegrating BSPs to their nuclei.

The two possible states (spins) in one energy level of orbiting electrons are re-
placed by the two types of electrons defined in the present theory, namely the

accelerating and decelerating electrons.

The splitting of the atomic beam in the Stern-Gerlach experiment is explained
with the magnetic field generated by the parallel currents composed of the orbital
electron and the current induced in the atomic nucleus. The magnetic spin is not

an intrinsic characteristic of the electron.

Relativity deduced on speed variables instead of space-time variables gives the
same equations as special relativity but without the fictitious concepts of time
dilation and length contraction. The transversal Doppler effect, which was never

experimentally detected, doesn’t appear.
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The wave character of the photon is defined as a sequence of FPs with opposed

transversal angular momenta which carry opposed transversal linear momenta.

Light that moves trough a gravitation field can only lose energy, what explains

the red shift of light from far galaxies (no expansion of the universe is required).

Diffraction of particles such as the Bragg diffraction of electrons is now the result

of the quantized interaction of parallel currents.

As the model relies on BSPs permitting the transmission of linear momenta at
infinite speed via FPs, it is possible to explain that entangled photons show no

time delay when they change their state.

The addition of a wave to a particle (de Broglie) is effectively replaced by a

relation between the particles radius and its energy.

The Schroedinger equation is replaced by an equation where the wave function is
derived one time versus space and two times versus time in analogy to Newton’s

second law.

The uncertainty relation of quantum mechanics derived with the new wave func-
tion forms pairs of canonical conjugated variables between ”energy and space”

and "momentum and time”.

The time independent Schroedinger equation results deriving the new wave func-

tion two times versus space, the same as for the established wave function.

The new quantum mechanics theory, based on wave functions derived from the
radius-energy relation, is in accordance with the quantum mechanics based on

the correspondence principle.

All interactions are of electromagnetic type and described by QEDs (Quantum

Electrodynamics) and no other type of interactions are required.

The gravitation of the present approach “Emission & Regeneration” UFT is com-
patible with quantum mechanics, what is not the case with General Relativity,
which is the gravitation model of the SM.

Finally the hypothesis is made that the apparent CMB radiation is a gravitational
effect between the mass of the satellite and the signal evaluating part of the

satellite, what would explaining the isotropy of the radiation.
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