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Preface

The Standard Model has passed many steps in the evolution to the

presently accepted version. The main difference between steps consists in

the description of the mechanism about what happens in the space between

attracting or repelling subatomic particles. The first primitive description

postulated the existence of a substance named ether responsible for the

transmission of forces between particles. Then an empty space was pos-

tulated and special carrier particles (photons, gluons, W and Z bosons,

gravitons) for each type of force were introduced as a substitute for the

ether. The methodology used was adapting nature to the postulated model

and not vice-versa.

The problems of the Standard Model have their origin in the very primi-

tive static representation of subatomic particles with the energy of a resting

particle concentrated in a small volume (Point-Like). This representation

forces the introduction of carriers (fictitious particles) to explain interac-

tions between them. All alternative approaches like Strings, Loops, Vortex,

etc., use the same static and concentrated representation and have therefor

the same problems to explain interactions.

Nature gives us a hint how energy can be concentrated in a small point

in space, namely in the focus of rays of photons. Based on this picture,

the proposed approach models subatomic particles such as electrons and

positrons as focal points of rays of Fundamental Particles that are conti-

nously emitted dynamically with light and infinite speed and absorbed

by the focal point. The energy of electrons and positrons is distributed on

their fundamental particles over the whole space and stored as rotations

defining longitudinal and transversal angular momenta (fields). Interactions

between subatomic particles are the product of the interactions of the an-

gular momenta of their Fundamental Particles. The combination of scalar

and vector products between the angular momenta gives the four known

forces (electromagnetic, strong, weak and gravitation). The basic laws of

physics (Coulomb, Ampere, Lorentz, Maxwell, Gravitation, etc.) are math-

ematically derived. This methodology makes sure, that the approach is in

accordance with well proven experimental data.

The main differences between the Standard Model and the proposed

approach are no carriers (bosons), no fictitious math constructs like time

dilation, length contraction and QCD. Gravitation is compatible with QED.

Peer reviewers reject all what differs from the Standard Model, consequently

they reject the proposed approach.

ii



Contents

Part I Postulates and definitions 1

1 Methodology. 1

2 General theoretical part. 3

2.1 Postulates that define a space with fundamental particles (FPs) with

longitudinal and transversal rotational momenta. . . . . . . . . . . . . 4

2.2 Postulates that define the interactions of fundamental particles. . . . . 7

2.3 Energy distribution of a basic subatomic particle (BSPs) that moves

with the velocity v̄. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.4 Deduction of the angle α between the speed vectors v̄s and v̄r . . . . . . 13

2.5 Determination of a more simple distribution function dκ(φ). . . . . . . 14

2.5.1 Analysis for BSPs with v → 0. . . . . . . . . . . . . . . . . . . . 15

2.5.2 Analysis for accelerating BSPs with ve → ∞. . . . . . . . . . . . 15

2.5.3 Analysis for decelerating BSPs with vr → ∞. . . . . . . . . . . . 18

2.5.4 General observations to the energy distribution of BSPs. . . . . 22

2.6 Energy of a BSP that moves with constant velocity v. . . . . . . . . . 23

2.7 Linear momentum p̄ of a BSP that moves with constant velocity v. . . 24

2.8 Energies stored in longitudinal rotational momenta J̄s and transversal

rotational momenta J̄n of regenerating FP. . . . . . . . . . . . . . . . . 24

2.8.1 Common angular velocity νg for all FPs. . . . . . . . . . . . . . 26

2.8.2 Common angular momentum Jg for all FPs. . . . . . . . . . . . 28

2.9 Definition of regenerating fundamental particles. . . . . . . . . . . . . . 29

2.10 Requirements for the generation of linear momentum p̄ on basic sub-

atomic particles (BSPs). . . . . . . . . . . . . . . . . . . . . . . . . . . 30

2.11 Energy balance and rotational momentum balance between FPs of a

BSP that moves with constant v. . . . . . . . . . . . . . . . . . . . . . 32

2.11.1 Energy conservation . . . . . . . . . . . . . . . . . . . . . . . . 32

2.11.2 Conservation of the rotational momentum. . . . . . . . . . . . . 33

2.11.3 Conservation of the linear momentum p. . . . . . . . . . . . . . 34

2.12 Basic subatomic particles that move with light speed. . . . . . . . . . 34

2.12.1 Energy and linear momentum of a basic subatomic particle that

moves with light speed. . . . . . . . . . . . . . . . . . . . . . . 34

2.12.2 Complex subatomic particles that move with light speed. . . . . 37

2.13 Polarization of basic subatomic particles. . . . . . . . . . . . . . . . . . 37

2.14 Determination of the probability functionW for basic subatomic particles. 38

2.15 Specific energy of a basic subatomic particle that moves with constant v. 40

iii



2.16 Definition of the magnitudes dHs and dHn. . . . . . . . . . . . . . . . . 41

2.16.1 Relations between fields from standard physics and the dH fields. 44

3 Linear momentum generated out of opposed angular momenta. 44

3.1 Total linear momentum out of dEp. . . . . . . . . . . . . . . . . . . . . 44

3.2 Elementary linear momentum out of dEh. . . . . . . . . . . . . . . . . 46

3.3 De Broglie and the Focal Point approach. . . . . . . . . . . . . . . . . . 48

Part II Static Interactions 49

4 Laws that describe the interactions at static basic subatomic parti-

cles. 49

4.1 Linear momentum at two basic subatomic particles. . . . . . . . . . . . 49

4.1.1 Calculations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

4.1.2 Complex particles. . . . . . . . . . . . . . . . . . . . . . . . . . 61

4.2 The Coulomb-law for two BSPs. . . . . . . . . . . . . . . . . . . . . . . 61

4.3 Convention for the representation of positron and electron. . . . . . . . 64

4.4 Power flow between charged complex SPs. . . . . . . . . . . . . . . . . 65

4.5 Invariance of the Coulomb force. . . . . . . . . . . . . . . . . . . . . . . 66

4.6 Induced force on a static BSP. . . . . . . . . . . . . . . . . . . . . . . . 67

4.7 Field divergence of a static complex SP. . . . . . . . . . . . . . . . . . . 68

4.8 Balance of energy, rotational momentum and linear momentum between

two static BSPs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

4.8.1 Balance of energy. . . . . . . . . . . . . . . . . . . . . . . . . . . 69

4.8.2 Balance of rotational momentum. . . . . . . . . . . . . . . . . . 70

4.8.3 Balance of linear momentum. . . . . . . . . . . . . . . . . . . . 71

4.9 Energy of transversal rotational momentums Jn at a torus with an axis

that coincides with a current of BSPs with speed v. . . . . . . . . . . . 72

4.10 Current flow of BSPs at an infinite straight conductor. . . . . . . . . . 75

4.10.1 Current flow through a closed loop enclosing an infinite straight

conductor. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

4.10.2 Current flow through a closed loop outside an infinite straight

conductor. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

4.11 Linear momentum density on two infinite straight parallel conductors

that have mass currents Im1 and Im2. . . . . . . . . . . . . . . . . . . . 77

4.11.1 Invariance of the Ampere force between two parallel conductors. 83

4.11.2 Energy and rotational momentum balance for two parallel con-

ductors. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

4.11.3 Calculations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

iv



4.12 Momentum on a BSP that moves with vt in a space with oriented

transversal rotational momentums. . . . . . . . . . . . . . . . . . . . . 87

4.12.1 General considerations . . . . . . . . . . . . . . . . . . . . . . . 87

4.12.2 Lorentz law. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

4.13 Momentum on a BSP that moves with light speed through a space with

oriented transversal rotational momentums. . . . . . . . . . . . . . . . 92

4.14 Momentum on complex particles that move with the speed v in a space

with oriented transversal rotational momentums. . . . . . . . . . . . . . 93

4.15 ∆t as a function of the radius ro of the BSP. . . . . . . . . . . . . . . . 93

4.16 Considerations on the quantized momentum time ∆t. . . . . . . . . . . 95

4.17 Momentum between BSPs that move with light speed. . . . . . . . . . 96

4.18 Classification overview of stable particles and fields. . . . . . . . . . . . 96

5 Quarks composed of electrons and positrons. 100

6 Spin of level electrons and the formation of elements 104

Part III Dynamic Interactions 107

7 Laws that describe dynamic interactions between BSPs. 107

7.1 Field at a point P of the space due to a BSP that moves with an instant

speed v. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

7.1.1 Deduction of d
dt

∫∞
rr
dκ at a point P for a BSP that moves with

the speed v. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

7.1.2 Deduction of the time differentiations at a point P of the longi-

tudinal and transversal fields for a BSP that moves with v. . . . 110

7.2 Induced force on a static BSP placed in a field ¯dH that changes with time.112

7.2.1 Force induced on a static BSP by the transversal field dHn of a

BSP that moves with v. . . . . . . . . . . . . . . . . . . . . . . 114

7.2.2 Force induced on a static BSP by the longitudinal field dHs of a

BSP that moves with v . . . . . . . . . . . . . . . . . . . . . . . 115

7.3 Induced linear momentum balance between static and moving BSPs. . . 116

7.3.1 Induced linear momentum balance between not aligned static

and moving BSPs. . . . . . . . . . . . . . . . . . . . . . . . . . 117

7.3.2 Induced linear momentum balance between aligned static and

moving BSPs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

7.4 Resume of origin of linear momentum. . . . . . . . . . . . . . . . . . . 120

7.5 The induced far force field of an oscillating BSP. . . . . . . . . . . . . . 122

7.5.1 Induced power on a static BSP that is in the far field of an

oscillating BSP. . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

v



7.5.2 Quantification of the irradiated energy of an oscillating BSP. . . 125

7.5.3 Quantification of the transversal component of the irradiated en-

ergy of an oscillating BSP. . . . . . . . . . . . . . . . . . . . . . 126

7.5.4 Analysis of the quantified components of the irradiated energy

of an oscillating BSP. . . . . . . . . . . . . . . . . . . . . . . . . 129

7.5.5 Distance between one pair of BSPs with v = c and its relation

with the stored energy. . . . . . . . . . . . . . . . . . . . . . . . 130

7.6 The Maxwell equations. . . . . . . . . . . . . . . . . . . . . . . . . . . 131

7.6.1 The 1. Maxwell equation for the far induced force field. . . . . . 131

7.6.2 The 2. Maxwell equation. . . . . . . . . . . . . . . . . . . . . . 133

7.6.3 Equivalence between traditional fields based on Coulomb charge

and fields based on mass charge. . . . . . . . . . . . . . . . . . . 133

7.7 Divergence. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

7.7.1 Divergence of the transversal field dHn. . . . . . . . . . . . . . . 134

7.7.2 Divergence of the force field d̄F . . . . . . . . . . . . . . . . . . . 135

7.8 Lorentz transformation. . . . . . . . . . . . . . . . . . . . . . . . . . . 136

7.9 Basic field equations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

7.10 Synopsis of the fundamental equations for the generation of linear mo-

mentum between BSPs. . . . . . . . . . . . . . . . . . . . . . . . . . . 139

7.10.1 Relativistic expressions of the fundamental equations. . . . . . . 141

8 Corner-pillars of the “E & R” UFT model 143

Part IV Miscellaneous I 145

9 Quantification of irradiated energy and movement. 145

9.1 Quantification of irradiated energy. . . . . . . . . . . . . . . . . . . . . 145

9.2 Energy and density of Fundamental Particles. . . . . . . . . . . . . . . 149

9.2.1 Energy of Fundamental Particles. . . . . . . . . . . . . . . . . . 149

9.2.2 Density of Fundamental Particles. . . . . . . . . . . . . . . . . . 151

9.3 Quantification of movement. . . . . . . . . . . . . . . . . . . . . . . . . 153

10 Analysis of linear momentum between two static BSPs. 154

11 Classification of BSPs with v = c. 158

12 Induction between a moving and a probe BSP. 162

13 Conventions introduced for BSPs. 163

vi



14 Flux density of FPs and scattering of particles. 172

14.1 Flux density of FPs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172

14.2 Scattering of particles. . . . . . . . . . . . . . . . . . . . . . . . . . . . 172

14.2.1 Feynman diagram. . . . . . . . . . . . . . . . . . . . . . . . . . 176

15 Bending of the trajectory of a BSP. 178

15.1 General considerations. . . . . . . . . . . . . . . . . . . . . . . . . . . . 178

15.2 Coulomb bending. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180

15.3 Ampere bending (Bragg law). . . . . . . . . . . . . . . . . . . . . . . . 181

15.3.1 Ampere bending deduced from the equation for two infinite par-

allel currents of BSPs. . . . . . . . . . . . . . . . . . . . . . . . 181

15.3.2 Ampere bending deduced from two parallel moving BSPs. . . . 183

15.4 Induction bending of a BSP. . . . . . . . . . . . . . . . . . . . . . . . . 185

15.5 Bending schemas for BSPs with v ̸= c. . . . . . . . . . . . . . . . . . . 188

16 Interaction of complex BSPs with v = c (photons) with regenerating

and emitted FPs from BSPs of matter. 190

16.1 General considerations. . . . . . . . . . . . . . . . . . . . . . . . . . . . 190

16.2 Splitting of BSPs with v = c. . . . . . . . . . . . . . . . . . . . . . . . 192

16.3 Differences between bending, reflection, refraction and splitting. . . . . 194

16.4 Interference schemas for BSPs with v = c. . . . . . . . . . . . . . . . . 194

16.5 Derivation of Snell’s refraction law. . . . . . . . . . . . . . . . . . . . . 198

16.6 Redshift of the energy of a BSP with light speed in the presence of matter.199

16.6.1 Refraction and red-shift at the sun. . . . . . . . . . . . . . . . . 200

16.6.2 Cosmic Microwave Background radiation as gravitation noise. . 201

Part V Gravitation 202

17 Induction between an accelerated and a static BSPs. 202

17.1 Induction between an accelerated and a probe BSP expressed as closed

path integration over the whole space. . . . . . . . . . . . . . . . . . . 202

17.2 Induction between an accelerated and a probe BSP expressed as rotor. 204

17.2.1 Fundamental moment for the generation of forces. . . . . . . . . 205

17.3 Induced gravitation force between two complex SPs. . . . . . . . . . . . 209

17.4 Transmission of gravitation momentum. . . . . . . . . . . . . . . . . . 210

18 The d̄Hn field induced at a point P during reintegration of a migrated

BSP to its nucleus. 213

19 Newton gravitation force. 214

vii



20 Ampere gravitation force. 216

20.1 Flattening of galaxies’ rotation curve. . . . . . . . . . . . . . . . . . . . 219

20.2 Current induced on a rotating body. . . . . . . . . . . . . . . . . . . . 221

21 Electromagnetic and Gravitation emissions. 222

22 Quantification of forces between BSPs and CSPs. 224

22.1 Quantification of the Coulomb force. . . . . . . . . . . . . . . . . . . . 224

22.2 Quantification of the Ampere force between straight infinite parallel con-

ductors. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 225

22.3 Quantification of the induced gravitation force (Newton). . . . . . . . . 225

22.4 Quantification of the gravitation force due to parallel reintegrating BSPs

(Ampere). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 226

22.5 Quantification of the total gravitation force. . . . . . . . . . . . . . . . 227

22.6 Transmission speed of elementary momenta between BSPs. . . . . . . . 228

23 Types of particles and interactions. 230

Part VI Relativity 232

24 Relativity. 232

24.1 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 232

24.2 Lorenz transformation based on speed variables. . . . . . . . . . . . . . 232

24.3 Transformations for momentum and energy of a particle. . . . . . . . . 235

24.4 Transformations for electromagnetic waves at measuring instruments . . 236

24.5 Equations for particles with rest mass m ̸= 0. . . . . . . . . . . . . . . 238

24.5.1 Linear momentum. . . . . . . . . . . . . . . . . . . . . . . . . . 238

24.5.2 Acceleration. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 239

24.5.3 Energy. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 239

24.6 Equations for particles with rest mass m = 0. . . . . . . . . . . . . . . 240

24.6.1 Relativistic Doppler effect. . . . . . . . . . . . . . . . . . . . . . 240

24.6.2 Transformation steps for photons from emitter to receiver. . . . 242

24.7 Relativistic energy of FPs. . . . . . . . . . . . . . . . . . . . . . . . . . 243

24.8 The proposed approach and the Standard Model. . . . . . . . . . . . . 244

24.9 Conclusions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 244

Part VII Miscellaneous II 247

25 Miscellaneous. 247

25.1 Strong and weak forces. . . . . . . . . . . . . . . . . . . . . . . . . . . 247

25.2 Light speed. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 248

viii



25.3 Life time of muons. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 249

25.4 Reflection and refraction of light. . . . . . . . . . . . . . . . . . . . . . 251

25.5 Entangled BSP. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 251

25.6 Electron and positron compensation and annihilation. . . . . . . . . . . 251

25.7 Differences between the Standard and the E & R Models in Particle

Physics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 253

25.8 Mass and charge in the E & R Model . . . . . . . . . . . . . . . . . . . 255

25.9 Permanent magnetism. . . . . . . . . . . . . . . . . . . . . . . . . . . . 256

25.9.1 Induced Magnetic spin in nucleons by an external magnetic field. 258

25.9.2 Faraday paradox. . . . . . . . . . . . . . . . . . . . . . . . . . . 259

25.10Emission Theory. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 261

25.11Redshift of photons in gravitation fields . . . . . . . . . . . . . . . . . . 263

25.12The Newton gravitation field. . . . . . . . . . . . . . . . . . . . . . . . 264

25.13Sagnac effect. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 265

25.14Precession of a gyroscope due to the Ampere gravitation force. . . . . . 268

25.15Thirring-Lense-Effect. . . . . . . . . . . . . . . . . . . . . . . . . . . . 270

25.16Atomic clocks and gravitation. . . . . . . . . . . . . . . . . . . . . . . . 273

25.16.1Hafele-Keating Experiment. . . . . . . . . . . . . . . . . . . . . 273

25.17Instability of positive BSP. . . . . . . . . . . . . . . . . . . . . . . . . . 278

25.18Energy levels of electrons in atoms. . . . . . . . . . . . . . . . . . . . . 278

25.19Radiation of accelerated BSPs. . . . . . . . . . . . . . . . . . . . . . . 279

25.20Coulomb force on a level electron. . . . . . . . . . . . . . . . . . . . . . 279

25.21Binding energy of BSPs in the nucleons. . . . . . . . . . . . . . . . . . 279

26 Characteristics of a good theory. 280

26.1 Impediments for scientific progress. . . . . . . . . . . . . . . . . . . . . 281

26.1.1 Experimentally proven. . . . . . . . . . . . . . . . . . . . . . . . 281

26.1.2 Epicycles of the Standard Model. . . . . . . . . . . . . . . . . . 283

26.1.3 Peer-review, a fire-wall against new approaches. . . . . . . . . . 285

Part VIII Quantum Mechanics 286

27 Quantum mechanics expressed in terms of the approach “Emission &

Regeneration” UFT. 286

27.1 General considerations. . . . . . . . . . . . . . . . . . . . . . . . . . . . 286

27.2 The wave package. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 287

27.3 Differential equations. . . . . . . . . . . . . . . . . . . . . . . . . . . . 288

27.4 Unrestricted differential equations. . . . . . . . . . . . . . . . . . . . . 288

27.4.1 The wave equation. . . . . . . . . . . . . . . . . . . . . . . . . . 289

ix



27.4.2 The time independent differential equation. . . . . . . . . . . . 289

27.4.3 The space independent differential equation. . . . . . . . . . . . 290

27.5 Non relativistic differential equations . . . . . . . . . . . . . . . . . . . 290

27.5.1 General non relativistic differential equation. . . . . . . . . . . . 290

27.5.2 The time independent non relativistic differential equation. . . . 291

27.5.3 Space independent non relativistic differential equation. . . . . . 292

27.6 Uncertainty principle. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 292

27.7 Operators. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 293

27.7.1 Relativistic operator for the linear momentum. . . . . . . . . . . 293

27.7.2 Relativistic operators for the energy. . . . . . . . . . . . . . . . 293

27.7.3 Non-relativistic operator for the kinetic energy. . . . . . . . . . 294

27.7.4 Non-relativistic Hamilton operator. . . . . . . . . . . . . . . . . 294

27.7.5 Non-relativistic operator for the orbital-angular-momentum. . . 294

27.8 The proposed theory and the Correspondence Principle. . . . . . . . . . 295

27.9 The mass conservation equation. . . . . . . . . . . . . . . . . . . . . . . 296

27.10The wave equation for relativistic speeds. . . . . . . . . . . . . . . . . . 297

28 Wave equations for free moving particles. 298

28.1 The relativistic wave equation for the free moving particle. . . . . . . . 298

28.1.1 The wave package for the relativistic wave equation. . . . . . . . 300

28.2 The slightly relativistic wave equation for the free moving particle. . . . 300

28.3 The non-relativistic wave equation for the free moving particle . . . . . 302

29 Applications of the non-relativistic differential equation 302

29.1 Potential pot . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 302

29.2 Harmonic oscillator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 304

29.3 Hydrogen atom . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 305

29.3.1 Generalization of the procedure to derive the splitting of the

energy levels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 310

29.3.2 Deduction of the condition λ = i l. . . . . . . . . . . . . . . . . 313

29.4 Helium atom. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 315

Part IX Miscellaneous III 317

30 Splitting of atoms and energy levels. 317

30.1 Splitting of atoms in the Stern-Gerlach experiment. . . . . . . . . . . . 317

30.2 The splitting of energy levels at the hydrogen atom. . . . . . . . . . . 319

31 Radiation of accelerated particles. 319

x



32 Stable and unstable particles. 321

32.1 The potentials of the four interactions. . . . . . . . . . . . . . . . . . . 322

33 Compatibility of gravitation with Quantum mechanics. 325

33.1 Quantized gravitation. . . . . . . . . . . . . . . . . . . . . . . . . . . . 325

33.2 Relation between energy levels and space. . . . . . . . . . . . . . . . . 326

33.3 Superposition of gravitation and Coulomb forces. . . . . . . . . . . . . 327

34 Table comparing the SM and the ’E & R’ model. 328

35 Spin, magnetic moment and photon. 330

35.1 The spin. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 330

35.2 The magnetic moment. . . . . . . . . . . . . . . . . . . . . . . . . . . . 331

35.3 The photon. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 331

36 Summery of main characteristics and conclusions of the proposed

model. 332

Bibliography 335

xi



Abbreviations and special nomenclature introduced.

FP Fundamental particle.

SP Subatomic particle.

BSP Basic subatomic particle (electron, positron and constituent of photon).

CSP Complex subatomic particle (proton, neutron, nuclei of atoms and photon).

LRM Longitudinal rotational (angular) momentum.

TRM Transversal rotational (angular) momentum.

J̄e Longitudinal rotational (angular) momentum (LRM) of emitted

fundamental particle.

J̄s Longitudinal rotational (angular) momentum (LRM) of regenerating

fundamental particle.

J̄n Transversal rotational (angular) momentum (TRM) of regenerating

fundamental particle.

J̄
(s)
n Transversal angular momentum generated by the longitudinal angular

momentum of two meeting regenerating fundamental particles.

J̄ (n) Angular momentum generated by the transversal angular momentum

of two meeting regenerating fundamental particles.

v̄l Low velocity of fundamental particle v̄l ≈ c.

v̄h High velocity of fundamental particle v̄h ≈ ∞.

v̄e Emission velocity of fundamental particle.

v̄r Velocity of regenerating fundamental particle.

v̄ Velocity of basic subatomic particle (BSP).

φ Emission angle of fundamental particle.

ψ Regenerating angle of fundamental particle.

α Angle between emitted and regenerating fundamental particles.

β Angle between regenerating fundamental particles.

dEs Energy stored in the longitudinal rotational momentum of

regenerating fundamental particle.

dEn Energy stored in the transversal rotational momentum of

regenerating fundamental particle.

E Relativistic energy of a basic subatomic particle (BSP).

H Square root of the relativistic energy of a basic subatomic particle.

dκ Space distribution function of the relativistic energy E of a BSP

and of its square root H.
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Part I Postulates and definitions

A space with Fundamental Particles with angular momenta is postulated and their

interactions defined in such a way, that linear momenta on Subatomic Paticles are

generated.

1 Methodology.

As a mathematical theory, physics should have a pyramidal shape, where few postulates

at the top allow the deduction of all known laws from top to bottom. Each law in the

theoretical building, expressed as an equation, is deduced from equations that are

placed at a higher level. The deduction of laws from equations that are placed at the

same level or below is not allowed.

Interactions between
fundamental particles

                               Basic laws (Coulomb, Ampere, 
                               Lorentz, Maxwell, Gravitation)

Particle wave postulate (de Broglie)

Quantum mechanics (Schroedinger)

Fundamental 
   particles

M
a

in
stre

a
m

  p
h

ysics

Experimental efforts to detect fundamental particles (scattering)

Theoretical efforts to Infer interactions between fundamental particles 
postulating the invariance of wave equations under gauge transformations    

Laws with state variables (Thermodynamics)

P
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o
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d
 a

p
p
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a
c
h

Figure 1: Methodology

Figure 1 shows a schematic comparison between the methodology used in main-
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stream physics and the proposed approach. The standard theory starts formulating

mathematically the basic laws for individual particles, namely, Coulomb, Ampere,

Lorentz, Maxwell and Gravitation. At a second level thermodynamic laws are intro-

duced to describe assemblies of particles with state variables. Then the particle’s wave

is postulated (de Broglie) to explain the analogy between diffraction patterns obtained

with electromagnetic rays and rays of particles. The particle’s wave allows the def-

inition of differential equations of the wave function to describe mathematically the

quantized behavior of particles in nature (Schroedinger). Up to this point of the the-

ory, no explanation is given about the origin of the forces and momenta obtained by

measurements between particles. Efforts made to find explanations are:

• of experimental nature, scattering particles in particle accelerators and

• of theoretical nature, trying to infer interactions between fundamental particles

postulating the invariance of wave equations under gauge transformations.

The present approach intends to explain what happens in the space between two

charged particles or two masses that generates the forces we measure at the particles.

The methodology followed starts postulating fundamental particles (FPs) based on the

idea, that the energy of a subatomic particle like the electron is not concentrated at a

point but distributed in space and, that the energy is stored in fundamental particles

that are emitted continuously from a focal point in space and to which regenerating

fundamental particles continuously return. FPs store the energy as rotations which

are independent of coordinate systems and which define longitudinal and transversal

angular momenta. In a second step the interactions between FPs are postulated as

interactions between their angular momenta, which mathematically is expressed as

scalar and vector products. Finally, the interaction laws between FPs are determined

in a recursive process so that the fundamental laws of physics, namely, Coulomb,

Ampere, Lorentz, Maxwell and Gravitation can be derived. The methodology makes

sure, that the approach is in accordance with experimental data.
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2 General theoretical part.

The present theory is based on the following postulates and physical laws:

• Postulates that define a space through the definition of fundamental particles

and its characteristics.

• Postulates that define the interactions of fundamental particles.

• Relativistic energy of a moving particle

E =
m c2√
1− v2

c2

(1)

• Inertial force

F =
dp

dt
with p =

m v√
1− v2

c2

(2)

In this section, fundamental particles (FPs) with longitudinal and transversal an-

gular momenta are postulated, filling the whole space.

Basic subatomic particles (BSPs) are defined (electron, positron and neutrino as

a constituent of the photon) and laws are postulated that describe the generation of

angular momenta when fundamental particles cross.

With the idea, that basic subatomic particles emit and are continuously regenerated

by fundamental particles, an equation for the distribution in space of the energy of a

BSP is introduced.

The regenerating fundamental particles and the requirements their angular mo-

menta must comply to generate linear momenta are defined.

The energy of a BSP that moves with constant velocity is distributed at the longi-

tudinal and transversal angular momenta of its regenerating fundamental particles.

The vector dH̄ is defined.

The probability equation for the crossing in space of emitted and regenerating

fundamental particles is defined, and the balance of energy and angular momenta is

shown.

The transition of BSPs with v < c to BSPs with light speed is deduced and the

photon is introduced as a complex subatomic particle (CSP).

The different forms of polarizations for BSPs are defined.
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2.1 Postulates that define a space with fundamental particles

(FPs) with longitudinal and transversal rotational mo-

menta.

• Postulate 1: A space exists with two types of fundamental particles (FPs)

that have strongly differing velocities designated by vh (high) and vl (low). The

FPs have longitudinal rotational momenta (LRMs) and move in a straight line

relative to a given system of coordinates. A right rotation of the LRM in the

moving direction of the FP is defined as positive LRM and designated by J̄ +
s . A

left rotation of the LRM in the moving direction of the FP is defined as negative

LRM and designated by J̄ −
s .

Normal (orthogonal) to its moving direction the FP can have transversal rota-

tional momenta (TRM) designated by J̄n. In a neutral space the TRM of the FPs

are not oriented in a special direction and their vector sum over time or space

neutralize.

• Postulate 2: Through each point in the space the two types of FPs flow contin-

uously in and from all directions. When two FPs cross in space, their directions

and velocities don’t change.

• Postulate 3: In the same space there are focal points where the FPs change

their velocities and the rotations of their LRM. These focal points are the points

where our standard theory assumes that the basic subatomic particles (BSPs),

namely the electrons and positrons are located.

The concept is shown in Fig. 2.

Fig. 2 shows the emitted FPs with their longitudinal angular momenta J̄e and

the regenerating FPs with their longitudinal and transversal angular momenta J̄s

and J̄n respectively. The configuration has an axial symmetry around the speed

vector v̄.

The transversal angular momenta follow the right screw law in the direction of

the speed v̄, independent of the charge of the BSP. Our standard theory defines

the magnetic field H̄ in the right screw direction for positively charged particles

and in the left screw direction for negatively charged particles.
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Figure 2: Particle represented as focal point

The BSPs are classified according to the change of the velocity of their FPs at

the focal point in accelerating and decelerating BSPs.

The concept is shown in Fig. 3.

1. Accelerating basic subatomic particles radiate fundamental particles (FPs)

with high velocity vh = ve (e=emission) and are regenerated by FPs with

low velocity vl = vr (r=regeneration).

2. Decelerating basic subatomic particles radiate fundamental particles (FPs)

with low velocity vl = ve (e=emission) and are regenerated by FPs with

high velocity vh = vr (r=regeneration).

The BSPs are also classified according to their longitudunal rotational momenta

in positive and negative BSP.

1. Positive basic subatomic particles transform negative LRM J̄ −
s in positive

LRM J̄ +
s .

The concept is shown in Fig. 4.

2. Negative basic subatomic particles transform positive LRM J̄ +
s in negative

LRM J̄ −
s .

The concept is shown in Fig. 5.
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Figure 3: Basic Subatomic Particles

Figure 4: Positive basic subatomic particle (positron)

Figure 5: Negative basic subatomic particle (electron)
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• Postulate 4: The FPs that are radiated by the basic subatomic particles have

no transversal rotational momenta J̄n and they possess well defined radiation

velocities relative to a system of coordinates that is fix to the basic subatomic

particles.

1. Accelerating basic subatomic particles emit fundamental particles (FPs)

with high velocity ve → ∞ relative to a system of coordinates that is fix to

the basic subatomic particle.

2. Decelerating basic subatomic particles emit fundamental particles (FPs)

with low velocity ve = c relative to a system of coordinates that is fix

to the basic subatomic particles.

2.2 Postulates that define the interactions of fundamental

particles.

• Postulate 5: The FPs with the longitudinal rotational momenta J̄e emitted by

a BSP generate, when they cross with the regenerating FPs of the same BSP,

longitudinal J̄s and transversal J̄n rotational momenta on the regenerating FPs.

The sense of rotation of the transversal rotational momenta J̄n is the direction in

that the vector J̄s must move over the smallest angle to coincide with the vector

J̄e of the BSP.

The FPs emitted by a BSP deliver the energy stored in their LRM J̄e to the

LRM J̄s and TRM J̄n of the regenerating FPs. The distribution of the energy

between the LRM and the TRM of the regenerating FPs is a function of the angle

α between the velocity vectors of the emitted and regenerating FPs.

The concept is shown on Fig. 6.
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In Fig. 7 the convention for unit vectors of emitted and regenerating fundamental

particles is shown.
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• Postulate 6: If two FPs from different BSPs cross, their LRM J̄s generate two

opposed TRM J̄
(s)
n that are defined by the cross product of the square roots of

their original LRM. The sign of the generated TRM is opposed to the product of

the signs of their original LRM.

J̄ (s)
n2

= sign(J̄s1) sign(J̄s2) (
√
Js1 s̄1 ×

√
Js2 s̄2) (3)

For the two generated transversal rotational momenta (TRM) we have that

J̄ (s)
n1

= − J̄ (s)
n2

(4)

The concept is shown on Fig. 8.
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Figure 8: Generation of transversal rotational momenta J
(s)
ni

out of longitudinal rotational momenta Jsi
of FPs that belong to different BSPs

The vectors s̄1 und s̄2 are unit vectors with the direction of the velocity vectors

of the FPs.

The upper (s) means that the rotational momenta were generated by longitudinal

rotational momenta.
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The sign of the TRM J̄
(s)
n is a function of the signs of the LRM of the FPs.

If the LRM of the FPs that cross have different signs, than opposed TRM J̄
(s)
n

are generated on the FPs that rotate to each other if seen against the moving

direction of the FPs.

If the LRM of the FPs that cross have the same signs, than opposed TRM J̄
(s)
n

are generated on the FPs that rotate from each other if seen against the moving

direction of the FPs.

• Postulate 7: If two FPs from different BSPs cross, their TRM J̄n will generate

two opposed rotational momenta J̄ (n) that are defined by the cross product of the

square roots of their original TRM. The sign of the generated rotational momenta

is given by the product of the signs of their original LRM. Additionally TRM

J̄
(s)
n according to postulate 6 are generated.

J̄
(n)
2 = sign(J̄s1) sign(J̄s2) (

√
Jn1 n̄1 ×

√
Jn2 n̄2) (5)

with

J̄
(n)
1 = − J̄

(n)
2 (6)

The concept is shown on Fig. 9.

The vectors n̄1 und n̄2 are unit vectors orthogonal to the direction of the velocity

vectors of the FPs.

The upper (n) means that the rotational momenta were generated by transversal

rotational momenta.

The rotation of the rotational momenta J̄
(n)
2 is opposed to the rotational mo-

menta J̄
(n)
1 and they can be expressed by their longitudinal and transversal com-

ponents.
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Figure 9: Generation of rotational momenta J
(n)
i

out of transversal rotational momenta Jni

of FPs that belong to different BSPs

• Postulate 8: If a FP 1 with an angular momentum J̄1 crosses with a FP 2 with

a longitudinal angular momentum J̄s2 , the orthogonal component of J̄1 to J̄s2 is

transferred to the FP 2, if at the same instant between two other FPs 3 and 4

an orthogonal component is transferred which is opposed to the first one.

2.3 Energy distribution of a basic subatomic particle (BSPs)

that moves with the velocity v̄.

Basic subatomic particles like the electron or the positron, that are at the time t = 0

at the point 1 with x = 0 and move with the velocity v, disintegrate by radiating

fundamental particles of one of the two velocities and are regenerated, at the point 2

with x̄ = v̄ t at the time t, by fundamental particles of the other velocity. The part of

the total radiating energy of the basic subatomic particle that is in the conus with the

rotational angle φ and the thickness dφ is given by the following expression:

dE =
m c2√
1− v2

c2

c

2 v

∣∣∣∣ v̄s
|v̄e|

× v̄r
|v̄r|

∣∣∣∣ W dφ dE = E dκ (7)

with
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E =
m c2√
1− v2

c2

dκ =
c

2 v

∣∣∣∣ v̄s
|v̄e|

× v̄r
|v̄r|

∣∣∣∣ W dφ (8)

The concept is shown on Fig. 10.
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Figure 10: Space diagram with emission vsts and regeneration vrtr distances
for a basic subatomic particle that moves with v

dκ describes the part of the total energy E of a basic subatomic particle that moves

with the velocity v contained in the angle dφ.

ve is the emission velocity of the fundamental particles relative to a coordinate

system that is fix with the basic subatomic particle that moves with v. The velocity

ve is equal to vh → ∞ for accelerating BSPs and equal to the speed of light c for

decelerating BSPs.

vs is the velocity of the emitted fundamental particles relative to a coordinate

system in which the BSP moves with the velocity v.

vs =
√
v2e + v2 − 2 ve v cosφ (9)

vr is the velocity of the fundamental particles that regenerate the BSP relative to a

coordinate system in which the BSP moves with the velocity v. For accelerating BSPs

vr = c is the velocity of light and for decelerating BSPs vr → ∞.

W represents the probability that emitted fundamental particles cross with regen-

erating fundamental particles. For a basic subatomic particle that moves with constant

velocity v the whole emitted energy must equal the whole regenerating energy to con-

12



serve the particle, so that the probability for the whole particle is W = 1.

2.4 Deduction of the angle α between the speed vectors v̄s and

v̄r .

Note: This subsection can be skipped in a first approache.

The time t that a BSP needs from point 1 to 2 must be equal to the time the

emitted FP needs from the moment of its emission at t = 0 to the moment it crosses

with the regenerating FP, plus the time the regenerating FP needs then to arrive at

x̄ = v̄ t.

The concept is shown in Fig. 10 and Fig. 11.

Fig. 11 shows the regeneration of a BSP at point x = 0 for two rays that were

emitted at vt and vt
′
.

Figure 11: Space diagram showing the regeneration of a BSP

0 <= φ <= π

ξ = φ
2
+ arctan

[
ve−v
ve+v

cot π−φ
2

]
v2s = v2e + v2 − 2 ve v cos(π − φ)
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tr = t− ts

v2r(t− ts)
2 = v2t2 + v2st

2
s − 2(vt)(vsts) cos ξ

(v2r − v2s)t
2
s + (2vvst cos ξ − 2tv2r)ts + (v2r − v2)t2 = 0

The solution of the second order equation gives ts.

ψ = π
2
− ξ

2
+ arctan

[
vsts−vt
vsts+vt

cot ξ
2

]
α = ψ + ξ

The crossing angle α is independent from the selected time t and varies as follows.

0 <= φ <= π

{
v = 0 α = π

0 <= v <= c π >= α >= π
2

(10)

A BSP is regenerated at the point x = 0 by all the rays the same BSP has emitted

from x→ −∞ to x = 0.

2.5 Determination of a more simple distribution function dκ(φ).

Note: This subsection can be skipped in a first approache.

The distribution function dκ(φ) is not adequate for analytic manipulation because

of the complicate dependence of α(φ). In what follows a more simple expression dκ(φ)

will be introduced.

The equation (7), that defines the distribution of the energy, we can write with

W = 1 as follows

dE =
m c2√
1− v2

c2

c

2 v

vs
ve

sinα dφ (11)

Because of∫ π

φ=0

dE =
m c2√
1− v2

c2

we have
c

2 ve

∫ π

φ=0

vs
v

sinα dφ = 1 (12)

For v = 0 we have that
∫ π
φ=0

dE = m c2, and we select from the many possible

functions for
∫ π
φ=0

f(φ) dφ = 1 the following function, selection that shows to be right

in all what follows.

∫ π

φ=0

dE = m c2 = m c2
1

2

∫ π

φ=0

sinφ dφ because
1

2

∫ π

φ=0

sinφ dφ = 1 (13)
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2.5.1 Analysis for BSPs with v → 0.

For v = 0 we have also that vs = ve, valid for BSPs with ve = c as for BSPs with

ve → ∞, what leads to the conclusion that

lim
v→0

sinα

v
=

1

c
sinφ (14)

and for dκ we get

dκ ≈ 1

2
W sinφ dφ v = 0 (15)

2.5.2 Analysis for accelerating BSPs with ve → ∞.

For accelerating BSPs we have to differentiate between v = 0 and v ̸= 0.

For v = 0 results that:

If for vr = c the speed ve → ∞ then te → 0, and for v = 0 results that

rr = vr tr → re = ve ts and drr → dre (16)

It results then that

ψ = φ and dψ = dφ (17)

For v ̸= 0 results that:

rr = vr tr ̸= re = ve ts and drr ̸= dre (18)

and that

ψ ̸= φ and dψ ̸= dφ (19)

Now we analyse dκ for v ≪ c and v = c−∆v with ∆v ≪ c.

We start with

dκ =
c

2 v

vs
ve

sinα W dφ (20)

a) With ve → ∞ it is vs ≈ ve and with v ≪ c the angle α can be approximated by

(see Fig. 12)

α ≈ π − v

c
sinφ (21)
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and we have that

dκ ≈ 2 c

π v
sin

[
π − v

c
sinφ

]
W sinφ dφ (22)

Because of

sin
[
π − v

c
sinφ

]
= sin

[ v
c

sinφ
]
≈ v

c
sinφ (23)

we have that

dκ ≈ 1

2
W sinφ dφ (24)

b) If we now take v = c−∆v with ∆v ≪ c the angle α can be expressed by

(see Fig. 12)

α ≈ π − φ for 0 ≤ φ ≤ π/2 and α ≈ φ for π/2 ≤ φ ≤ π (25)

we get sinα = sinφ for 0 ≤ φ ≤ π and for dκ

dκ ≈ 1

2
W sinφ dφ (26)
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Fig. 12 shows the relation between α, φ and the speed v for accelerating BSPs

where ve → ∞ and vr = c.
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Figure 12: α as a function of φ and v for accelerating BSPs
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Fig. 13 shows the relation between ψ, φ and the speed v for accelerating BSPs.
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Figure 13: ψ as a function of φ and v for accelerating BSPs

2.5.3 Analysis for decelerating BSPs with vr → ∞.

If for ve = c the speed vr → ∞, then tr → 0 and

rr = vr tr → re = ve ts and drr → dre (27)

We conclude that for decelerating BSPs

ψ = φ and dψ = dφ (28)

Now we analyse dκ for v ≪ c and v = c−∆v with ∆v ≪ c.

We start with

18



dκ =
c

2 v

vs
ve

sinα W dφ (29)

a) With ve = c and v ≪ c it is vs ≈ c and the angle α can be approximated by

(see Fig. 14)

α ≈ π − v

c
sinφ (30)

and we have that

dκ ≈ c

2 v
sin

[
π − v

c
sinφ

]
W dφ (31)

Because of

sin
[
π − v

c
sinφ

]
= sin

[ v
c

sinφ
]
≈ v

c
sinφ (32)

we have that

dκ ≈ 1

2
W sinφ dφ (33)

b) If we now take v = c−∆v with ∆v ≪ c the angle α can be expressed by

(see Fig. 14)

α ≈ 1

2
(π + φ) or sinα ≈ cos

φ

2
(34)

and

vs =
√
v2e + v2 − 2 ve v cosφ ≈ 2 c sin

φ

2
(35)

we get

dκ ≈ 1

2
W sinφ dφ (36)

Conclusion: The function dκ has the following important characteristics:

• The equation for dκ is the same for the whole speed range 0 ≤ v ≤ c for acceler-

ating and decelerating BSPs.

• The function dκ gives the energy distribution in space, which must be the same

for all reference systems. This is expressed by the independence of dκ from the

speed v.

• The function dκ has a rotational symmetry around the velocity vector v̄.
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• The function dκ has the following symmetry, which is very important for the

demonstrations of the conservation laws

dκ(φ) = dκ(π − φ) (37)

Fig. 14 shows the relation between α, φ and the speed v, for decelerating BSPs

with ve = c and vr → ∞.
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Figure 14: α as a function of φ and v for decelerating BSPs
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Fig. 15 shows the relation between ψ, φ and the speed v for decelerating BSPs.
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Figure 15: ψ as a function of φ and v for decelerating BSPs

Miscellaneous

If we define

v

c
= sinαm (38)

with αm the minimum of the curve α/φ for a given speed v, we get for decelerating

BSPs with ve = c and for accelerating BSPs with ve → ∞, expressions that depend

only from angles.

Fig. 16 shows the angle αm as function of the speed v, angle that is the same for

accelerating and decelerating BSPs.
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Figure 16: αm for accelerating and decelerating BSPs

Note: The energy distribution function dκ was selected between several possible

functions like

dE =
m c2√
1− v2

c2

2 c

π v

∣∣∣∣ v̄s
|v̄e|

× v̄r
|v̄r|

∣∣∣∣ W sinφ dφ dE = E dκ (39)

with

dκ ≈ 2

π
W sin2 φ dφ (40)

With this distribution the force between two static BSPs expressed as rotor of the

field dHn is zero for φ = 0 which is not the case for the distribution selected for the

present approach (see 17.2).

2.5.4 General observations to the energy distribution of BSPs.

In sec. 2.5 we have introduced the function dκ for the energy distribution in space for

a BSP.

For an isolated BSP with v = 0 the distribution of the energy is point symmetric

with no privileged direction and described by
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dκ =
1

2

ro
r2r
drr (41)

This is not expressed with

dκ =
1

2

ro
r2r
drr sinφ (42)

that is also valid for v = 0 and where we have a privileged direction defined by

φ = 0.

We are not interested in isolated particles without interactions. Privileged directions

exist always we have more than one BSP and are defined by the connecting directions

of the BSPs.

We have also seen that all interactions at v = 0 between BSPs are generated by

accelerations of the BSPs in the connecting directions.

This explains why the equation

dκ =
1

2

ro
r2r
drr sinφ (43)

is also valid for v = 0 where the privileged direction is the connecting line to the

other BSP.

2.6 Energy of a BSP that moves with constant velocity v.

To obtain the total energy of a basic subatomic particle that moves with constant v, the

equation (7) of section 2.3 for dE must be integrated over the whole spacial coordinates.

As dE represents the Energy in the angle dφ that has a rotational symmetry, the

integration goes from φ = 0 to φ = π.

E =
m c2√
1− v2

c2

c

2 v

∫ φ=π

φ=0

∣∣∣∣ v̄s
|v̄e|

× v̄r
|v̄r|

∣∣∣∣ W dφ (44)

Calculations.

To calculate the energy we assumed as low speed vl = c and as high speed for the

fundamental particles vh = 1017 ·c m
s
and used the mass of the electron. The deviation

in percent between Emust and Ecalc in the range 0 ≤ v ≤ c was less than 10−6. The

results were the same for accelerating and decelerating BSPs.

Note: With the energy distribution of eq.(39) and a low speed vl = c and a high

speed of vh = 1017 · c m
s
, the deviation in percent between Emust and Ecalc in the range

0 ≤ v ≤ c was less than 10−12.
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2.7 Linear momentum p̄ of a BSP that moves with constant

velocity v.

The linear momentum of a basic subatomic particle that moves with constant velocity

v is given by

p̄ =

∫
dp̄ =

v̄

c 2

∫
dE (45)

with

dp̄ =
m v̄√
1− v2

c2

c

2 v

∣∣∣∣ v̄s
|v̄e|

× v̄r
|v̄r|

∣∣∣∣ W dφ dp̄ = p̄ dκ (46)

The equation is composed by the total linear momentum of the BSP and a dimen-

sionless factor that gives the part of the linear momentum corresponding to the angle

dφ.

Calculations

To calculate the linear momentum we assumed as low speed vl = c and as high

speed for the fundamental particles vh = 1017 · c m
s
and used the mass of the electron.

The deviation in percent between pmust and pcalc in the range 0 ≤ v ≤ c was less than

10−6. The results were the same for accelerating and decelerating BSPs.

2.8 Energies stored in longitudinal rotational momenta J̄s and

transversal rotational momenta J̄n of regenerating FP.

We start with the total energy of a BSP with constant v.

E =
√
E2
o + E2

p (47)

with

Eo = m c2 Ep = p c and p =
m v√
1− v2

c2

(48)

and through differentiation we get

dE =
Eo dEo + Ep dEp√

E2
o + E2

p

(49)

We define
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dEs =
Eo dEo√
E2
o + E2

p

and dEn =
Ep dEp√
E2
o + E2

p

(50)

and get

dE = dEs + dEn with dEo = c2 dm and dEp =
c v√
1− v2

c2

dm (51)

Through integration we obtain

E = Es + En with Es =
E2
o√

E2
o + E2

p

and En =
E2
p√

E2
o + E2

p

(52)

From

dE =
m c2√
1− v2

c2

c

2 v

∣∣∣∣ v̄s
|v̄e|

× v̄r
|v̄r|

∣∣∣∣ W dφ (53)

and

E =
m c2√
1− v2

c2

= Es + En (54)

results that

dEs =
E2
o√

E2
o + E2

p

c

2 v

∣∣∣∣ v̄s
|v̄e|

× v̄r
|v̄r|

∣∣∣∣ W dφ dEs = Es dκ (55)

and

dEn =
E2
p√

E2
o + E2

p

c

2 v

∣∣∣∣ v̄s
|v̄e|

× v̄r
|v̄r|

∣∣∣∣ W dφ dEn = En dκ (56)

The current densities σs and σr of the fundamental particles are proportional to

their velocities vs and vr.

σs = ϱs vs and σr = ϱr vr (57)

The energy of a BSP is stored in the rotational momentum of the emitted and

regenerating fundamental particles. The energy of a BSP is continuously transferred

from the LRM of the emitted FP to the LRM and TRM of the regenerating FP. The
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energy flows continuously from FPs with one velocity to FPs with the other velocity

(vh / vl).

The equation to calculate the energy Ep from Es and En is

Ep =
Eo
Es

√
Es

√
En (58)

2.8.1 Common angular velocity νg for all FPs.

If we assume that the longitudinal and transversal angular momenta of the regenerating

fundamental particles from an isolated basic subatomic particle have a common angular

velocity νg we get

∆Ee = νg Je ∆Es = νg Js ∆En = νg Jn (59)

Ee = νg

Ne∑
i

Jei Es = νg

Ns∑
i

Jsi En = νg

Nn∑
i

Jni
(60)

where Ne, Ns and Nn are the corresponding numbers of ∆Ee, ∆Es and ∆En.

The concept is shown in Fig. 17.

Figure 17: Spacial representation of L-(J̄s) and T-(J̄n) rotational momentum
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If we now define equivalent rotational momenta J , Jo and Jp so that we obtain

E = νg J Eo = νg Jo Ep = νg Jp (61)

and that

E = Ee = Es + En =
√
E2
o + E2

p = νg

√
J2
o + J2

p = νg J = νg
∑

Je (62)

then we get

J =
√
J2
o + J2

p and J =
∑

Je =
∑

Js +
∑

Jn (63)

a relation between the orthogonal rotational momenta Js and Jn of the regenerating

FP and the equivalent rotational momenta J , Jo and Jp of the basic subatomic particle.

If we consider the axial symmetry of the rotational momentum J̄n we obtain the

vector sum

∑
J̄n = 0 (64)

Also for v = 0 the vector sum of J̄s is

∑
J̄s = 0 (65)

If all FPs have the same angular momentum JFP we get

J = Ne JFP = Ns JFP + Nn JFP and Ne = Ns + Nn (66)

where now Ne is the number of the total emitted FPs, Ns the number of the total

regenerating FPs with longitudinal angular momenta and Nn the number of the total

regenerating FPs with Transversal angular momenta.

For the energy we have

νg J = Ne JFP νg = Ns JFP νg + Nn JFP νg or E = Ee = Es + En (67)

where EFP = JFP νg is the energy of one FP.
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2.8.2 Common angular momentum Jg for all FPs.

If we assume that the longitudinal and transversal angular momenta of the regenerat-

ing fundamental particles from an isolated basic subatomic particle are all equal to a

common angular momentum Jg we get

∆Ee = Jg νe ∆Es = Jg νs ∆En = Jg νn (68)

and

Ee = Jg

Ne∑
i

νei Es = Jg

Ns∑
i

νsi En = Jg

Nn∑
i

νni
(69)

where Ne, Ns and Nn are the corresponding numbers of ∆Ee, ∆Es and ∆En.

If we define equivalent angular frequencies ν, νo and νp so that we obtain

E = Jg ν Eo = Jg νo Ep = Jg νp (70)

and

E = Ee = Es + En =
√
E2
o + E2

p = Jg

√
ν2o + ν2p = ν Jg (71)

then we get

ν =
√
ν2o + ν2p and ν =

∑
i

νei =
∑
i

νsi +
∑
i

νni
(72)

a relation between the angular frequencies νs and νn of the regenerating FP and

the equivalent angular frequencies ν, νo and νp of the basic subatomic particle.

If all FPs have the same angular frequency νFP we get

ν = Ne νFP = Ns νFP + Nn νFP and Ne = Ns + Nn (73)

where now Ne is the number of the total emitted FPs, Ns the number of the total

regenerating FPs with longitudinal angular momenta and Nn the number of the total

regenerating FPs with Transversal angular momenta.

For the energy we have

ν Jg = Ne νFP Jg = Ns νFP Jg + Nn νFP Jg or E = Ee = Es + En (74)
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where EFP = νFP Jg is the energy of one FP.

2.9 Definition of regenerating fundamental particles.

As regenerating fundamental particles of a BSP that moves with constant velocity v

in a space that is not influenced by other BSPs, we define those FPs of the space that

comply with the following requirements:

1. they are of the opposite type compared with the emitted FPs. This means, that

they have from the two possible velocities vh or vl the opposite one.

2. they move in the direction in which they meet emitted FPs with the same velocity

vs and under the same angle α from rr = ∞ to rr = ro, where ro is the radius of

the nucleus of the basic subatomic particle.

The concept is shown on Fig. 18.

Figure 18: Regeneration of a particle at t = 0
due to emissions at t2 < 0 and t1 < 0

The probability to meet in the space fundamental particles that comply with the

first requirement is

wo = 1 (75)
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The emitted FPs that the regenerating particles meet at the trajectory to the nu-

cleus of the BSP, were emitted by the same BSP during the time t = −∞ to t = 0.

The LRMs Js and TRMs Jn that are generated on the regenerating FPs when they

meet with the emitted FPs at the trajectory to the nucleus of the BSP are all identic.

These regenerating FPs transport with their rotational momentums the energy that

regenerates the basic subatomic particle.

Fundamental particles of the opposite type than the emitted one, that move in

other directions, meet on their trajectory emitted FPs that have different velocities vs

and under different angles α. The generated LRMs and TRMs on these trajectories are

not identic and don’t contribute to the regeneration of the basic subatomic particle.

The exchange of energy between emitted and regenerating FPs is given by the

following equation

νgJe = νgJs + νgJn (76)

with Je the longitudinal rotational momentum of the emitted FP and ν the common

angular velocity.

For v = 0 only the FPs of the opposite type than the emitted FPs that move on

radial trajectories to the nucleus of the basic subatomic particle, meet permanently

emitted FPs with the same velocity vs = ve and under the same angle α = π.

Only on those FPs of the opposite type that move on radial trajectories to the

nucleus of the basic subatomic particle, identical regenerating LRMs are produced

along their trajectory, while on those FPs that move in other directions different LRMs

are produced along their trajectory.

It is important to note, that while the FPs of the other type are equally distributed

in the space and the probability to meet them is therefor wo = 1, the regenerating

FPs with the LRM Js and TRM Jn move on radial trajectories to the BSP and the

probability to meet them is therefor

wr =
ro
r2r
drr (77)

2.10 Requirements for the generation of linear momentum p̄

on basic subatomic particles (BSPs).

The requirements that must be fulfilled by rotational momentums of fundamental par-

ticles to generate linear momentum p̄ on a BSP are:

1. The rotational momentums must form pairs with the same amplitude and with

parallel but opposed angular velocities.
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2. The direction orthogonal (normal) to the plane that contains the opposed angular

momentums and that goes through the center of the circle to which the opposed

rotational momentums are tangential, must go also through the BSP.

The concept is shown on Fig. 19.

Figure 19: Symmetry requirements for generation of linear momentums

Note: The generation of linear momentum out of a pair of opposed angular mo-

mentum is similar to what can be observed when a cyclone and a anticyclone meet.

The pair of opposed transversal rotational momentum from a BSP that moves

with constant velocity v, comply with the requirements for the generation of linear

momentum p in the direction of the velocity v.

Note: Isolated FPs have only angular momenta, they have no linear momenta.

Linear momentum is the product of the energy stored in FPs with opposed angular

momentum as previously defined. When FPs meet in space they interact changing the

orientation of their angular momenta.

The concept is shown on Fig. 20.
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Figure 20: Generation of linear momentum at a moving BSP

2.11 Energy balance and rotational momentum balance be-

tween FPs of a BSP that moves with constant v.

2.11.1 Energy conservation

The energy flow between the fundamental particles of a basic subatomic particle must

not violate the energy conservation principle.

The total energy of a basic subatomic particle that moves with constant velocity

v must remain unchanged. This means that the energy stored in the longitudinal

rotational momentum Je of an emitted FP must be transferred to the rotational mo-

mentums of the regenerating FP when they meet and regenerate the BSP. This means

that

νgJe = νgJs + νgJn (78)

The concept is shown on Fig. 21.
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Figure 21: Balance of energy and rotational momentum

2.11.2 Conservation of the rotational momentum.

To demonstrate the conservation of the rotational momentums we assume that all the

rotational momentums of the FPs that participate on the flow of energy of a BSP that

moves with constant velocity v have the same angular velocity νg.

We make use of the function dκ(φ) = dκ(π − φ) and write

dE = νgJe = E dκ(φ) = E dκ(π − φ) = νgJ
′

e Je = J
′

e (79)

dEs = νgJs = Es dκ(φ) = Es dκ(π − φ) = νgJ
′

s Js = J
′

s (80)

dEn = νgJn = En dκ(φ) = En dκ(π − φ) = νgJ
′

n Jn = J
′

n (81)
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For a plane that contains the axis of the axial-symmetric configuration we have

J̄e = −J̄ ′

e J̄s = −J̄ ′

s J̄n = −J̄ ′

n (82)

The whole process is dynamic where at the same instant opposed rotational mo-

mentums are generated and annihilated, so that the sum of all rotational momentums

remain equal zero. At the nucleus, opposed J̄e rotational momentums are generated

while at the same instant opposed J̄e rotational momentums are transformed in op-

posed J̄s and J̄n rotational momentums. At the same instant during the regeneration

of the nucleus, opposed J̄s and J̄n rotational momentums are annihilated.

Note: There is a strong coupling between the opposed rotational momentums J̄ ,

so that they are generated and annihilated at the same instant, independent of the

distance between them (entanglement).

2.11.3 Conservation of the linear momentum p.

The linear momentum p is a measurable variable of a BSP, generated by rotational

momentums of the regenerating fundamental particles of the BSP when they fulfill the

requirements for generation of linear momentum. The conservation of linear momentum

has no validity for fundamental particles. They maintain, according to their definition

the direction and velocity when they meet with other fundamental particles.

2.12 Basic subatomic particles that move with light speed.

2.12.1 Energy and linear momentum of a basic subatomic particle that

moves with light speed.

Up to now we have seen basic subatomic particles that move with velocities smaller

than the speed of light.

We start with the energy equation of a basic subatomic particle.

dE =
m c2√
1− v2

c2

c

2 v

∣∣∣∣ v̄s
|v̄e|

× v̄r
|v̄r|

∣∣∣∣ W dφ (83)

with

m c2√
1− v2

c2

= Es + En and W = 1 (84)

and
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Es =
E2
o√

E2
o + E2

p

and En =
E2
p√

E2
o + E2

p

(85)

with

Eo = m c2 and Ep =
m v√
1− v2

c2

c (86)

and we define that for v → c and the rest masse m→ 0

lim
m→0
v→c

m√
1− v2

c2

= mc (87)

with mc the masse at light velocity.

We obtain, that

Eo → 0 and Ep → mc c
2 (88)

and

Es → 0 and En → mc c
2 (89)

For v → c the longitudinal rotational momentum J̄s → 0 and only the transversal

rotational momentum J̄n remain. The total energy of a basic subatomic particle with

light speed is stored in the transversal rotational momentum. Longitudinal rotational

momentums don’t exist and the particle does not emit FPs and is not regenerated

by FPs. The transversal rotational momentums fulfill the requirements for generation

of linear momentum in the direction of propagation or opposed to it. Due to the

non existence of longitudinal rotational momentums they can simultaneously fulfill the

requirements for generation of linear momentum in a direction that is transversal to

the propagation direction.

An equivalent representation for the transversal rotational momentums responsible

for the linear momentum p
∥
c parallel to the propagation direction, is its tangential

arrangement on a ring that is in a plane orthogonal to the propagation direction. The

concept is shown in Fig. 22.

The vector sum of the transversal rotational momentums along the ring, that we

designate with 0∥ must give zero. So we have that

∑
0∥

J̄n = 0 and E ∥
c = m ∥

c c
2 =

∮
∥
dEn =

∑
0∥

νu Jn (90)

The linear momentum is
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Figure 22: Photon composed of two basic subatomic particles
with opposed potential transversal linear momentums pz

p ∥
c = m∥

c c =
1

c

∮
∥
dEn (91)

An equivalent representation for the transversal rotational momentums responsible

for the linear momentum p ⊥
c orthogonal to the propagation direction, is its tangential

arrangement on a ring that is in a plane that contains the propagation direction.

The vector sum of the transversal rotational momentums along the ring, that we

designate with 0⊥ must give zero. So we have that

∑
0⊥

J̄n = 0 and E⊥
c = m⊥

c c
2 =

∮
⊥
dEn =

∑
0⊥

νu Jn (92)

The linear momentum is

36



p ⊥
c = m⊥

c c =
1

c

∮
⊥
dEn (93)

For the total energy and the total linear momentum we have that

[ Ec ]
2 = [ E ∥

c ]2 + [ E⊥
c ]2 [ pc ]

2 = [ p ∥
c ]2 + [ p⊥c ]2 (94)

with

[ mc ]
2 = [ m ∥

c ]2 + [ m⊥
c ]2 (95)

Note. The defined basic subatomic particles that move with light speed don’t emit

and are not regenerated by fundamental particles. Their existence is independent from

the space in which they move. The potential linear momentum they transport can

be oriented in moving direction, opposed to the moving direction or orthogonal to the

moving direction. They are not photons. Photons will be defined as complex subatomic

particles that move with light speed.

2.12.2 Complex subatomic particles that move with light speed.

Complex subatomic particles that move with light Speed (photons) are generated when

negative basic subatomic particles (electrons) of an atom change to a lower energy

level. The energy difference is stored in the transversal rotational momentum Jn of

basic subatomic particles that move with light speed. A complex subatomic particle

that moves with light speed consists of at least two basic subatomic particles that move

with light speed, separated by a distance of λ
2
in propagation direction. The two basic

subatomic particles differ in their potential transversal linear momentums p ⊥
c , that are

opposed.

The longitudinal linear momentum p
∥
c is responsible for the particle character, while

the opposed transversal linear momentums at the distance λ
2
define the wave character

of the complex subatomic particle that move with light speed (photon).

The concept is shown on Fig. 22.

2.13 Polarization of basic subatomic particles.

We have seen that the basic subatomic particles emit fundamental particles in all

directions and are regenerated by fundamental particles of the opposed type from all

directions.

To calculate the total energy or the total linear momentum we have to ingrate over
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the angle φ from 0 to π, and over the angle γ from 0 to 2 π as shown in Fig. 17.

The integration over the angle γ is not necessary with non polarized basic subatomic

particles because of the rotational symmetry of these particles.

The polarized basic subatomic particles have an axial symmetry and the integrations

over the angle φ or the angle γ are limited to part of the whole intervals, because over

the remaining intervals the integrations are zero.

The following polarizations (spins) are possible:

1. Longitudinal polarization, when the integration over the angle γ can be limited

to part of the whole interval.

2. Transversal polarization, when the integration over the angle φ can be limited to

part of the whole interval.

3. Longitudinal and transversal polarization, when both integrations can be limited

to part of the whole intervals.

4. Complex polarization, when the relation between γ and φ is given by a complex

function.

2.14 Determination of the probability function W for basic

subatomic particles.

The emitted fundamental particles expand with constant velocity in the space around

the nucleus of the basic subatomic particle.

The density is therefore invers proportional to the square distance to the nucleus

of the basic subatomic particle.

The density of the emitted beam of fundamental particles is because of the radial

symmetry given by

ρe =
ro
r2e

(96)

Fundamental particles of the opposed type are equally distributed in the neutral

space and the probability to meet them is

wo = 1 (97)

The probability that fundamental particles of the emitted beam meet with funda-

mental particles of the opposed type in the neutral space in the volume
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dV = dre redφ re sinφ dγ (98)

and regenerate the basic subatomic particle is

w = we wo with we =
ro
r2e
dre (99)

For a basic subatomic particle that moves with constant speed v in a neutral space

the probability W that the emitted fundamental particles meet with fundamental par-

ticles of the opposed type is W = 1. This results from the consideration that the

energy of the emitting basic subatomic particle at x = 0 and the energy of the basic

subatomic particle that is regenerated at the distance x = vt is the same.

The integration of the probability along the emitted beam is given by

W =

∫ ∞

ro

w =

∫ ∞

ro

ro
r2e
dre = 1 (100)

A basic subatomic particle that moves with the velocity v is regenerated at t = 0

by its emitted fundamental particles from t = −∞ to t = 0. The probability that

fundamental particles meet in the defined volume dV is expressed as a time function

by

w = we wo =
(ve to)

(ve ts)2
d(ve ts) (101)

with

ve to = ro Radius of the nucleus of the BSP

ve ts = re Length of the emitted ray

ve dts = dre

Note: ts = te for all BSP.

The concept is shown in Fig. 23;

See also Fig. 18.

We define that inside the radius ro of the nucleus of the BSP there are no emitted

fundamental particles and that the probability to meet them there is zero. The time

integration along the emitted beam is

W =

∫ −to

−∞

(ve to)

(ve ts)2
d(ve ts) = 1 (102)

If we introduce the probability function in the equation for the energy
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Figure 23: Space diagram showing the regeneration of a particle at vt = 0
due to emissions at vt and vt

′

dE =
m c2√
1− v2

c2

c

2 v

∣∣∣∣ v̄s
|v̄e|

× v̄r
|v̄r|

∣∣∣∣ W dφ (103)

we get

dE =
m c2√
1− v2

c2

c

2 v

∣∣∣∣ v̄s
|v̄e|

× v̄r
|v̄r|

∣∣∣∣ ∫ ∞

ro

ro
r2e
dre dφ (104)

The linear momentum is given by

dp =
v

c2
dE (105)

2.15 Specific energy of a basic subatomic particle that moves

with constant v.

We start with the expression
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dE = E dκ (106)

with

dκ =
c

2 v

∣∣∣∣ v̄s
|v̄e|

× v̄r
|v̄r|

∣∣∣∣ ror2r drr dφ dγ

2π
(107)

For accelerating and decelerating BSPs we have for v ≪ c that φ ≈ ψ and re ≈ rr.

For differences between accelerating and decelerating BSPs see Fig. 13 and Fig. 15.

We also have that

vs ≈ ve and sinα ≈ v

c
sinφ (108)

We get

dκ ≈ 1

2

ro
r2r
drr sinφ dφ

dγ

2π
(109)

With

drψ = rr dφ h = rr sinφ dV = drr drψ h dγ (110)

we get for the specific energy

dE

dV
=

E

4π

ro
r 4
r

for v ≪ c (111)

The energy density varies only with the distance rr. There is no influence on the

energy density distribution due to the speed v.

2.16 Definition of the magnitudes dHs and dHn.

We start with the expressions

E = Es + En dE = dEs + dEn (112)

with

dEs = Es
c

2 v

∣∣∣∣ v̄s
|v̄e|

× v̄r
|v̄r|

∣∣∣∣ w dφ dEs = Es dκ (113)

and
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dEn = En
c

2 v

∣∣∣∣ v̄s
|v̄e|

× v̄r
|v̄r|

∣∣∣∣ w dφ dEn = En dκ (114)

with

dκ =
c

2 v

∣∣∣∣ v̄s
|v̄e|

× v̄r
|v̄r|

∣∣∣∣ w dφ dE = E dκ (115)

We define the magnitudes

dHs = Hs dκ and dHn = Hn dκ (116)

with

H2
s = Es =

E2
o√

E2
o + E2

p

and H2
n = En =

E2
p√

E2
o + E2

p

(117)

We define also the variable H so that

H2 = H2
s + H2

n with H2 = E (118)

For the longitudinal components at a point in the space we get

dE = H2 dκ = ν Je dH = H dκ (119)

dEs = H2
s dκ = ν Js dHs = Hs dκ (120)

and for the transversal component we get

dEn = H2
n dκ = ν Jn dHn = Hn dκ (121)

Note:

[ dH ]2 = ν Je dκ = dE dκ ̸= dE [ dHs ]
2 = ν Js dκ = dEs dκ ̸= dEs (122)

[ dHn ]2 = ν Jn dκ = dEn dκ ̸= dEn dH ̸= dHs + dHn (123)

For a particle moving with v ≪ c we have

Es ≈ Eo En ≈ p2

m
Hs ≈

√
m c Hn ≈ p√

m
(124)
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and

dHn = Hn dκ =
p√
m
dκ p =

√
m

∫
σ

dHn (125)

with
∫
σ
the spacial integral. From the last expression we see that dHn is a measure

of the linear momentum p of a particle.

If two fundamental particles from two BSPs cross, their longitudinal rotational

momentums generate, according to postulate 6, the following transversal rotational

momentum.

J̄ (s)
n2

= sign(J̄e1) sign(J̄e2) (
√
Je1 ē1 ×

√
Js2 s̄2) (126)

If we multiply both sides of the equation with
√
νe1 dκ1 and

√
νs2 dκ2 and take the

absolute value we get

dE(s)
n2

=
∣∣∣ √νe1 Je1 dκ1 ē1 ×

√
νs2 Js2 dκ2 s̄2

∣∣∣ (127)

or

dE(s)
n2

= | dHe1 ē1 × dHs2 s̄2 | with dHsi s̄i =
√
νsi Jsi dκi s̄i (128)

If at the same time two other fundamental particles from the same two BSPs gen-

erate a transversal rotational momentum −J̄ (s)
n2 , so that the pair complies with the

symmetry requirements for generation of linear momentum, we get for the linear mo-

mentum on the two BSPs

dp =
1

c
dE(s)

p with dE(s)
p =

∣∣∣∣∣
∫ ∞

rr1

dHe1 ē1 ×
∫ ∞

rr2

dHs2 s̄2

∣∣∣∣∣ (129)

If two fundamental particles from two BSPs cross, their transversal rotational mo-

mentums generate, according to postulate 7, the following rotational momentum.

J̄
(n)
2 = sign(J̄e1) sign(J̄e2) (

√
Jn1 n̄1 ×

√
Jn2 n̄2) (130)

If we multiply both sides of the equation with
√
νn1 dκ1 and

√
νn2 dκ2 and take

the absolute value we get

dE
(n)
1 = | dHn1 n̄1 × dHn2 n̄2 | with dHni

n̄i =
√
νni

Jni
dκi n̄i (131)
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If at the same time two other fundamental particles from the same two BSPs cross,

and their transversal rotational momentum generate a rotational momentum −J̄ ′(n)
2 ,

so, that the pair complies with the symmetry requirements for generation of linear

momentum, we get for the linear momentum on the two BSPs

dp =
1

c
dE(n)

p with dE(n)
p =

∣∣∣∣∣
∫ ∞

rr1

dHn1 n̄1 ×
∫ ∞

rr2

dHn2 n̄2

∣∣∣∣∣ (132)

2.16.1 Relations between fields from standard physics and the dH fields.

The energy densities for the electric and the magnetic fields from standard physics are:

ωe =
1

2
E D =

1

2
ϵo E

2 ωm =
1

2
H B =

1

2
µo H

2 (133)

Note: Bold letters are used for the fields from standard physics.

For the fields of the present theory, the corresponding energy densities are:

ωs =
dEs
dV

ωn =
dEn
dV

with dV = r2 dr sinφ dφ
dγ

2π
(134)

With

dHs =
√
dEs dκ and dHn =

√
dEn dκ (135)

we get with ωe = ωs and ωm = ωn

dHs =

√
1

2
ϵo dV dκ E and dHn =

√
1

2
µo dV dκ H (136)

Note: The fields from standard physics generate the forces on charged particles

directly while the dH fields from the present approach require pairs of opposed dH

components to generate forces (see sec. 2.10).

3 Linear momentum generated out of opposed an-

gular momenta.

3.1 Total linear momentum out of dEp.

Fig. 24 shows how the linear momentum dp is calculated out of the opposed angular

momenta J̄n and −J̄n for a single moving subatomic particle (SP). For the single

particle it is dp = 0 what means that p = mv is constant in time.
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Figure 24: Generation of linear momentum out of opposed angular momenta

Two SPs interact trough the cross or scalar products of the angular momenta of

their FPs. For SP “1” and SP “2” we can write in a general form:

J ē =
√
dJ1 ē1 ×

√
dJ2 ē2 (137)

with dJi = Ji dκi and ēi the unit vector.

We now multiply the equation with the frequency ν to get the energy.

dE ē =
√
ν J1 dκ1 ē1 ×

√
ν J2 dκ2 ē2 (138)

With dEi = ν Ji = Ei dκi and Ei = Ei(v) and dκ = dκ(ro, r, φ, γ) we get

dE ē =
√
E1 dκ1 ē1 ×

√
E2 dκ2 ē2 (139)

and with dHi =
√
Ei dκi we get
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dE ē = dH1 ē1 × dH2 ē2 = dH̄1 × dH̄2 (140)

We define that

dE
′

p ē =
√
E1

∫ ∞

ro

dκ1 ē1 ×
√
E2

∫ ∞

ro

dκ2 ē2 =

∫ ∞

ro

d̄H1 ×
∫ ∞

ro

d̄H2 (141)

and that

dEp =
1

2πR

∮
dE

′

p ē · dl̄ dp =
1

c
dEp dF =

dp

dt
(142)

Note: For the Coulomb interaction ēi = s̄i. For the Ampere interaction ēi = n̄i

and for the inductive interaction ē1 = n̄1 and ē2 = s̄2 and the cross product has to be

changed to the scalar product.

3.2 Elementary linear momentum out of dEh.

The energy stored in the transversal angular momentum Jn of a BSP moving with v

and which corresponds to a volume dV was defined as

dEn = En dκn = Jn ν (143)

The concept is shawn in Fig.24

We now define N as the number of FPs with the elementary energy EFP = hνo,

where νo is a universal constant frequency, contained in the volume dV with energy

dEn. See sec. 9.2.1 for the definition of EFP = hνo.

Nn =
dEn
EFP

=
En dκn
EFP

with EFP = h νo (144)

The linear momentum of a SP defines a relative movement to a static BSA and is

given by

dp
(n)
ind =

1

c
dH̄n · dH̄sp with dHi = Hi dκi (145)

where dH̄n is the transversal field of the moving BSP and dH̄sp is the longitudinal

field of the static porbe BSP. With

dHi =
√
Ei dκi =

√
dEi dκi =

√
Ni EFP dκi (146)

The product dκn dκsp that results from equation (145) gives the probability that

FPs of the two BSPs meet in the volume dV . As to each FP from Nn corresponds one
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Figure 25: Generation of elementary linear momentum
out of opposed elementary angular momenta h

FP of Nsp results that Nn = Nsp = N and that the probability dκn dκsp = 1. We get

that

dp
(n)
ind =

1

c
N EFP (147)

If we define the elementary linear momentum dph as (see Fig. 25)

dph =
1

c
EFP =

h

c
νo (148)

and consider that Nn = Nsp = N we get for the total linear momentum

dp
(n)
ind = N dph (149)

For

dEn = En dκ =
E2
p√

E2
o + E2

p

dκ (150)

and E2
o << E2

p and v << c we get

N =
dEn
EFP

=
m c dκ

EFP
v = K v with K =

m c dκ

EFP
= constant (151)
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From eq. (149) we get

dp
(n)
ind = m v dκ p

(n)
ind = m v

∮
V

dκ p
(n)
ind = m v (152)

3.3 De Broglie and the Focal Point approach.

The present Focal Point approach defines the wave length of a SP as follows:

λ =
h c√

E2
o + E2

p

with Eo = m c2 Ep = p c (153)

We define the following wavelength:

λo =
h c

Eo
and λp =

h c

Ep
(154)

If we replace them in the first equation we get

λ =
1√

1
λ2o

+ 1
λ2p

or
λ2

λ2o
+
λ2

λ2p
= 1 (155)

For the de Broglie wavelength λdB = λp we get

λdB = λp =
λ λo√
λ2o − λ2

(156)
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Part II Static Interactions

Deduction of the Coulomb, Ampere and Lorentz laws. Quarks are defined as swarms

of electrons and positrons.

4 Laws that describe the interactions at static basic

subatomic particles.

In this section the linear momentum at two static BSPs that are separated by the

distance d is deduced and the quantized momentum time ∆t and the potential energy

are calculated.

The general form of the Coulomb-law is deduced and the range is shown where it

coincides with the classic Coulomb-law.

The induction between two static BSPs is derived and the energy-, angular and

linear momenta balance presented.

The energy of the transversal angular momenta of FPs of a straight infinite conduc-

tor, and the current flow for a constant mass-current Im are calculated. Subsequently,

the linear momentum on two parallel straight conductors at the distance d and the

general form of the Ampere-law are derived. The range is shown where the general

Ampere-law coincides with the classic Ampere-law.

After calculation of the quantized momentum time ∆t for two straight conductors

and comparing it with the quantized momentum time ∆t for two static BSPs, the

coincidence in the range d≫ ro is shown, where ro is the radius of a BSP.

The force (Lorentz) on a BSP that moves with constant speed through a field of

oriented transversal angular momenta and the force on a complex SP through the same

field is explained.

Finally a classification of particles and fields is presented.

4.1 Linear momentum at two basic subatomic particles.

At an isolated basic subatomic particle with v = 0 the angle α between emitted and

regenerating fundamental particles is α = π and no transversal rotational momentum

Jn is generated. If there are two static basic subatomic particles at a distance d, the

emitted fundamental particles of one BSP will cross with the regenerating fundamental

particles of the other BSP and their longitudinal rotational momentums will generate

opposed transversal rotational momentums according to postulate 6. Because of the

symmetry shown on Fig. 26, the opposed transversal rotational momentums Jn are

generated at different but symmetric rays. These transversal rotational momentums
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have different magnitudes along a ray of regenerating fundamental particles because

of the changing angle β along the ray, but all have the same rotational sense. The

concept is shown on Fig. 26.
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Figure 26: Generation of rotational momentums at regenerating fundamental particles
of two static basic subatomic particles at the distance d

The generated opposed transversal rotational momentums J̄
(s)
n2 at the regenerating

rays of BSP 2 comply with the requirements for generation of linear momentum at BSP

2. The direction of the linear momentum coincides with the connection line between

the two basic subatomic particles.

According postulate 6 it is

J̄ (s)
n2

= sign(J̄e1) sign(J̄e2)
(√

Je1 ē1 ×
√
Js2 s̄2

)
(157)

The sign of the linear momentum is given with

sign(dp̄2) = − sign(J̄ (s)
n2

) (158)

To calculate the energy dE
(s)
p that allows to calculate the linear momentum dp, we
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start with the energy equation for longitudinal rotational momentum Js of a BSP that

moves with the velocity v.

dEs =
E2
o√

E2
0 + E2

p

c

2 v

∣∣∣∣ v̄s
|v̄e|

× v̄r
|v̄r|

∣∣∣∣ we dφ (159)

with

we =
ro
r2e
dre and Eo = m c2 (160)

For v = 0 we have that vs = ve and that

lim
v→0

sinα

v
=

1

c
sinφ (161)

We obtain

dEs = Eo
1

2
we sinφ dφ = Eo dκ (162)

For v = 0 we also have, that

re = rr dre = drr φ = ψ dφ = dψ (163)

and we can write dEs as follows

dEs = Eo
1

2
wr sinψ dψ = Eo dκ (164)

Now we write the expression for the variable dHs

dHs = Hs
1

2

ro
r2r
drr sinψ dψ with Hs =

√
Eo (165)

Through the area dA at the distance rr defined by the differential angles dψ and

dγ of the torus with vertex at the BSP

dA = rr sinψ rr dψ dγ (166)

flows at each moment all the fundamental particles that the regenerating ray has

stored from rr to rr = ∞.∫ ∞

rr

dHs with ψ and dψ = constant (167)
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The same is valid for the fundamental particles stored by the emitting ray and we

can write ∫ ∞

rr

dHe with dHe = H dκ =
√
Eo dκ (168)

If we have two basic subatomic particles whose stored fundamental particles meet

at the distances rr1 and rr2 , we get for the energy contribution responsible for the linear

momentum at BSP 2

dE(s)
p =

∣∣∣∣∣
∫ ∞

rr1

dHe1 s̄1 ×
∫ ∞

rr2

dHs2 s̄2

∣∣∣∣∣ (169)

and the linear momentum is given by

dp2 s̄R =
a

c

∮
R

{
d̄l · (s̄1 × s̄2)

2πR

∫ ∞

r1

He1 dκr1

∫ ∞

r2

Hs2 dκr2

}
s̄R (170)

Note: The dimensionless equalization factor a = 8.7743 · 10−2 is introduced at this

point to make in sec. 9.1 the product Eo ∆ot exactly equal the Planck constant h.

The magnitudes dHe1 and dHs2 must refer to the same volume dV in which they

meet and in which they generate the transversal rotational momentum. In this special

case of symmetry the requirement is fulfilled, because of the coincidence of the two

toruses of the BSPs, by the following relation between the two areas.

drr1 rr1 dψ1 = drr2 rr2 dψ2 (171)

The concept is shown in Fig. 27.

The contribution to the linear momentum of the BSP 2 due to the ring-shaped

volume dV is

dp2 =
1

c
dE(s)

p (172)

We obtain the total linear momentum for the BSP 2 by integrating over the whole

space. For the integration over dψ1 and dψ2 we must consider the minimum and

maximum integration limits defined by the radii of the two BSPs and the distance d.

The limits are given by

ψmin = arcsin
ro
d

ψmax = π − ψmin d ≥
√
r2o + r2o (173)

ψmin = arccos
d

2ro
ψmax = π − ψmin d <

√
r2o + r2o (174)
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Figure 27: Geometric relations for the calculation of the linear momentum
between two static basic subatomic particles at a distance d

p2 =

∫ ψ1max

ψ1min

∫ ψ2max

ψ2min

dp2 (175)

The concept is shown in Fig. 28 for the angle φ of the emitted ray.
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Figure 28: Integration limits for the calculation of the linear momentum
between two static basic subatomic particles at the distance d

The force is measured by reversing the distance ∆d produced by the linear momen-

tum p̄2 in the time ∆t, applying an external force on the BSP. We can therefore write

that dp̄2 = p̄2.

dF̄2 = − dp̄2
dt

= − p̄2
∆t

(176)

To obtain the total resulting force F̄ we have to integrate along all the regenerating
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rays of BSP 2.

F̄2 =

∫
σ

dF̄2 (177)

At large distances beyond the maximum linear momentum of Fig. 29, where the

force is given by the Coulomb law, the quantized momentum time ∆t is calculated by

the ratio between the momentum p2 and the Coulomb force between two charges.

∆t =
p2
F

with F =
1

4 π ϵo

Q1 Q2

d 2
(178)

At short distances before the maximum linear momentum of Fig. 29, we define the

quantized momentum time ∆t as equal to the quantized momentum time ∆t beyond

the maximum linear momentum which has the same momentum p2.

We note that the probability w is a function of the radius of the BSP and, therefore

also the momentum p2 and the time ∆t are functions of the radius.

For complex particles that consist of more than one BSP, the force is given by

dF̄2 = −(∆n1.∆n2)
p̄2
∆t

(179)

dF̄2 = −(∆n1.∆n2)
a

c ∆t

∣∣∣∣∣
∫ ∞

rr1

dHe1 s̄1 ×
∫ ∞

rr2

dHs2 s̄2

∣∣∣∣∣ (180)

with ∆ni = n+
i − n−

i the difference between the number of positive and negative

BSPs that form the complex particle i.

For the proton we have n+ = 919 and n− = 918 with a binding Energy of EBprot =

−6.9489 · 10−14 J = −0.43371MeV . For the neutron we have n+ = 919 and n− = 919

with a binding Energy of EBneutr = 5.59743 · 10−14 J = 0.34936MeV .

We define the field generated by the complex particle 1 as

dFF =
dF̄2

∆n2

= −∆n1
a

c ∆t

∣∣∣∣∣
∫ ∞

rr1

dHe1 s̄1 ×
∫ ∞

rr2

dHs2 s̄2

∣∣∣∣∣ (181)

with dFF the force generated by the complex SP ∆n1 on a BSP at point 2.

4.1.1 Calculations

The results are the same for accelerating and decelerating BSPs.

me = 9.1093897 · 10−31 kg
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qe = 1.60217733 · 10−19 A s

ϵo = 8.85418781762 · 10−12 A s
V m

ve = c

vr = 1030 m
s

ro = 10−16 m

a = 8.7743 · 10−2

Note: Because of the axis symmetry of the Coulomb configuration it is possible to

describe the problem without the space variable γ. The general form of the distribution

function dκ is

dκ =
1

2

ro
r2r
drr sinφ dφ

dγ

2π
(182)
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Fig. 29 shows the calculation for the linear momentum p.

For d = 0 we have p = 0. The linear momentum grows up to his maximum at d = 2 ro

and then decreases proportional to d−2.
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Figure 29: Linear momentum p between two static basic subatomic particles
with radius ro = 1.0 · 10−16m
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Fig. 30 shows the calculation for the time ∆t.

For d = 2 ro the time has a minimum an grows then up for d → ∞ to the same value

it has for d = 0.

0

x 10
- 27

distance [ m ]2.0 x 10 - 16
1.6 x 10 - 15

t
 [ 

s ]

0.9

1.2

1.5

1.8

2.1

2.4

2.7

3.0

3.3

3.6

Figure 30: Quantized momentum time ∆t between two static basic subatomic particles
with radius ro = 1.0 · 10−16m
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Fig. 31 shows the calculation for the force F .

For d = 0 the force is F = 0. The force grows up to his maximum at d = 2 ro and then

decreases proportional to d−2.
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Figure 31: Force F between two static basic subatomic particles
with radius ro = 1.0 · 10−16m
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Fig. 32 shows the calculation for the potential energy W .

For d = 0 the potential energy is W = 0. The potential energy then grows for d→ ∞
to Wpot = 1.6 · 10−12 J
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Figure 32: Potential energy between two static basic subatomic particles
with radius ro = 1.0 · 10−16m
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Summary of calculations.

The time ∆t is the same for d = 0 and for d→ ∞.

∆t(d = 0) = ∆t(d→ ∞) (183)

The time ∆t is a function of the radii ro1 and ro2 .

∆t = K ro1 ro2 with K = 5.42713 · 104 sec
m2

= constant for d≫ ro (184)

That the force disappears for d = 0 means that in the nucleus of an atom the BSPs

don’t attract nor repel each other.

The energy necessary to separate two BSPs with the proposed radii ro and with

opposed signs from d = 0 to d = ∞ is

Wpot = 1.6 · 10−12 J ≈ 1.0GeV. (185)

Note: The ionization potential required to separate an orbital electron from its

atom is approx. 5.0 eV . The energy of Wpot ≈ 1.0GeV shows the difficulty to separate

one electron from a neutron, which is composed of equal number of electrons and

positrons.

Conclusions.

• As the Coulomb law is only an approximation of the force between two BSPs for

distances d≫ ro we conclude, that the time ∆t is constant for all distances from

d = 0 to d → ∞ as long as the radii remain constant. This conclusion is based

on the result that the time ∆t is the same for d = 0 and d→ ∞ (see Fig. 30).

• The new expression for the Coulomb law is proportional to the mass of the elec-

tron or positron. The charge of the electron is used to calculate the quantized

momentum time ∆t. The conservation law of charge is replaced by the conser-

vation law of positive n+ and negative n− BSPs that form a complex SP. As the

n are integer numbers, the Coulomb force is quantized.

• As the linear momentum is caused by a pair of regenerating fundamental par-

ticles with opposed rotational momentums in the time ∆t, the frequency the

fundamental particles arrive to the nucleus of the BSP is 1
∆t
.
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4.1.2 Complex particles.

Complex particles are formed by basic subatomic particles with distances between them

oscillating around zero. All electrons and positrons that form a stable atomic nucleus

are in the region left to the maximum of the curve of Fig. 29, where the attracting

or repulsing force grows with the distance. Because of the dynamic polarization of an

atomic nucleus produced by the electrons and positrons of the nucleus, all electrons or

positrons that leave the nucleus are immediately attracted and remain in the nucleus.

Positive BSPs don’t mix with negative BSPs at d = 0 because their emitted and

regenerating fundamental particles have different rotational momentums and velocities.

They can be separated by applying the necessary energy to overcome the maximum

linear momentum between them.

We have defined ∆ni = n+
i − n−

i as the difference between the number of positive

and negative BSPs that form the complex particle i. As examples we have for the

proton n+ = 919 and n− = 918 with a binding Energy of EBprot = −6.9489 · 10−14 J =

−0.43371 MeV , and for the neutron n+ = 919 and n− = 919 with a binding Energy

of EBneutr = 5.59743 · 10−14 J = 0.34936MeV .

4.2 The Coulomb-law for two BSPs.

For the static force between two basic subatomic particles with v = 0 and therefor

ψ = φ we get from the previous section

F2 =

∫
σ

a

c ∆t

∣∣∣∣∣
∫ ∞

rr1

dHe1 s̄1 ×
∫ ∞

rr2

dHs2 s̄2

∣∣∣∣∣ (186)

with ∫ ∞

rr1

dHe1 =
1

2

√
m1 c

ro1
rr1

sinφ1 dφ1 |s̄1 × s̄2| = sin β (187)

and ∫ ∞

rr2

dHs2 =
1

2

√
m2 c

ro2
rr2

sinφ2 dφ2 (188)

If we put the last two expressions in the first equation and concentrate on a dF2 we

get, because of the symmetry

dF2 =
a

4 ∆t

√
m1

√
m2 c ro1 ro2

sinφ1 sinφ2

rr1 rr2
sin β dφ1 dφ2 (189)

or
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dF2 = KF
sinφ1 sinφ2

rr1 rr2
sin β dφ1 dφ2 KF =

a

4 ∆t

√
m1

√
m2 c ro1 ro2 (190)

With the following geometric conditions

R = rr1 sinφ1 R = r2 sinφ2 − rr1 cosφ1 + rr2 cosφ2 = d (191)

we get

rr1 rr2 = d 2 sinφ1 sinφ2

[ sinφ1 cosφ2 − sinφ2 cosφ1 ]2
(192)

As

sinφ1 cosφ2 − sinφ2 cosφ1 = sin(φ1 − φ2) = sin β (193)

we obtain for the total force F2

F2 =
KF

d 2

∫ φ1max

φ1min

∫ φ2max

φ2min

| sin3(φ1 − φ2)| dφ2 dφ1 (194)

With ∆t = K ro1 ro2 and ro1 = ro2 and m1 = m2 and a = 8.7743 · 10−2 we get

KF =
a

4 K
m c = 1.104516 · 10−28

[
kg m3

s2

]
with K = 5.4274 · 104

[ s

m2

]
(195)

φmin = arcsin
ro
d

φmax = π − φmin d ≥
√
r2o + r2o (196)

φmin = arccos
d

2 ro
φmax = π − φmin d <

√
r2o + r2o (197)

Eq.(194) is the Coulomb-law expressed in the present approach. We see the

inverse proportionality to d 2. The double integral becomes zero for d→ 0 because the

integration limits approximate each other taking the values φmin = π
2
and φmax = π

2
.

For d≫ ro the double integral becomes a constant because the integration limits tend

to φmin = 0 and φmax = π.

The classic Coulomb-law for the electron is

Fs =
1

4π ϵo

qe · qe
d2

= K
′

F

1

d2
(198)

with
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K
′

F =
q2e

4π ϵo
= 2.307078 · 10−28 [N m2] (199)

If we make F2 = Fs we get for the double integral the value
∫ ∫

Coulomb
= 2.0887

which is valid for d≫ ro. The Coulomb equation transforms to

F2 = 2.088768
a c

4 K

√
m1

√
m2

d 2
= 2.78029601 · 1032 m1 m2

d 2
(200)

The charge of the electron is replaced by the mass of the electron.

For complex particles that are formed by more than one BSP and with d ≫ ro we

have

F2 = 2.307078 · 10−28 ∆n1 ·∆n2

d2
(201)

The charge Q is replaced by the expression ∆n = n+−n− which gives the difference

between the constituent numbers of positive and negative BSPs that form the complex

SP. As the ni are integer numbers, the Coulomb force is quantified.

As examples we have for the proton n+ = 919 and n− = 918 with a binding Energy

of EBprot = −6.9489 · 10−14 J = −0.43371 MeV , and for the neutron n+ = 919 and

n− = 919 with a binding Energy of EBneutr = 5.59743 · 10−14 J = 0.34936MeV .

In the case of an atomic nucleus ∆n = n+ − n− is equal to the order number Z of

the element.

The following Fig.33 shows a schematic representation of the generation of the

Coulomb force.

We now express the Coulomb force as a function of the power stored in the longi-

tudinal angular momentum of the two BSPs. We start with eq. (194) that we write

as

F2 =
a m c r2o
4 ∆t d 2

∫ ∫
Coulomb

=
a c r2o

√
m

√
m

4 d 2
√
∆t

√
∆t

∫ ∫
Coulomb

(202)

or

F2 =
a r2o
4 c d 2

√
Eo
∆t

√
Eo
∆t

∫ ∫
Coulomb

and with Po =
Eo
∆t

= Eo νo (203)

we get for complex particles

F2 =
a r2o
4 c

√
Po

√
Po

∆n1 ·∆n2

d2

∫ ∫
Coulomb

(204)
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Figure 33: Generation of linear momentum between two static BSP

4.3 Convention for the representation of positron and elec-

tron.

Fig. 34 shows the convention used for the electron and positron. The positron emits

FPs with high speed ve = ∞ and positive longitudinal angular momentum J̄ +
s (∞+)

and is regenerated by FPs with low speed vr = c and negative longitudinal angular

momentum J̄ −
s (c−). The electron emits FPs with low speed ve = c and negative

longitudinal angular momentum J̄ −
s (c−) and is regenerated by FPs with high speed

vr = ∞ and positive longitudinal angular momentum J̄ +
s (∞+). (see sec. 2.1 postulate

3)

cvr = ¥=ev

Positron

¥=rv

Electron

cve =

Figure 34: Convention for electron and positron
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4.4 Power flow between charged complex SPs.

The energy Ep exchanged between two BSPs is given by

Ep =

∫
σ

a

∣∣∣∣∣
∫ ∞

rr1

dHe1 s̄1 ×
∫ ∞

rr2

dHs2 s̄2

∣∣∣∣∣ with a = 8.7743 · 10−2 (205)

or

Ep = 6.82333 · 10−27 Eo
d 2

J (206)

and the power P

P1 =
Ep
∆ot

= c F1 = c F2 = P2 with ∆ot = K r2o (207)

resulting

P1 = 6.82333 · 10−27 Eo
∆ot

1

d 2
J/s (208)

The energy Ep = P1 ∆ot is exchanged with the frequency

νo =
1

∆ot
= 1.2373 · 1020 s−1 (209)

The concept is shown at Fig.35
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Figure 35: Power flow between charged complex SPs
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Note: According eq.(206) the exchange energy Ep = pc = Eo gives the distance

d = 8.26032 · 10−14 m, distance that is smaller than 2ro = 7.71806 · 10−13 m where the

curve of Fig.29 has its maximum of pmax = 1.3 · 10−23 Ns and Epmax = 3.9 · 10−15 J .

For all distances d the exchanged energy Ep < Eo ≈ 21 Epmax .

In the case of charged complex SPs the power exchanged is

P1 = ∆n1 ∆n2
Ep
∆ot

= c F1 = c F2 = P2 (210)

For a given distance d, each BSP of the complex SP ”1” emits ∆n2 times the power

of two isolated BSPs at the same distance d, and each BSP of the complex SP ”2”

emits ∆n1 times the power of two isolated BSPs at the same distance d. The power

interchange is quantized in power units of two isolated BSPs at the same distance d.

Fig. 36 shows a proton with one level electron. The level electron emits FPs with

light speed, what explains the light speed of photons when the level electron changes

to a lower energy level.
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+

+
- -

-
-
-

-
--

-
-

- -+
F

tronLevel elec

Proton

-c

-c

+¥

+¥

+¥

+¥

+¥

-c

+¥

+¥

Figure 36: Proton with level electron

4.5 Invariance of the Coulomb force.

Two BSPs that move parallel with the speed v at a distance d between them, are

exposed to the following Coulomb force.

dF̄2 =
a

c ∆t

∣∣∣∣∣
∫ ∞

rr1

dHe1 s̄1 ×
∫ ∞

rr2

dHs2 s̄2

∣∣∣∣∣ (211)

where we have for the emitting particle 1

dHe1 = H dκe1 where H2 = E =
√
E2
o + E2

p (212)

and for the regenerating particle 2
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dHs2 = Hs dκs2 where H2
s = Es =

E2
o√

E2
o + E2

p

(213)

We now analyze the force for v ≪ c and for relativistic speed.

a) For v ≪ c we have that

H =
√
Eo and Hs =

√
Eo (214)

If we introduce these expressions in (211) we get

dF̄2 = a
mo c

2

c ∆t

∣∣∣∣∣
∫ ∞

rr1

dκe1 s̄1 ×
∫ ∞

rr2

dκs2 s̄2

∣∣∣∣∣ (215)

b) For relativistic speed with E2
o ≪ E2

p we have that

H ≈
√
Ep and Hs ≈

Eo√
Ep

(216)

If we introduce these expressions in (211) we get

dF̄2 = a
mo c

2

c ∆t

∣∣∣∣∣
∫ ∞

rr1

dκe1 s̄1 ×
∫ ∞

rr2

dκs2 s̄2

∣∣∣∣∣ (217)

As dκ is independent of the speed v and proportional to the particle’s radius like

∆t, we get the same force for the whole range 0 ≤ v ≤ c of speed. The Coulomb force

is invariant for inertial reference systems.

Note: The Lorentz invariance of the charge in today’s theory is equivalent to the

invariance of the difference between the constituent numbers of BSPs with positive

J̄
(+)
e and negative J̄

(−)
e that integrate the complex SP.

4.6 Induced force on a static BSP.

The force between two static basic subatomic particles is basically, if we ignore the

proportionality factor a,

Fsp =

∫
σ

dFsp with dFsp =
1

c ∆t

∣∣∣∣∣
∫ ∞

rr

dHe s̄×
∫ ∞

rp

dHsp s̄p

∣∣∣∣∣ (218)

where
∫
σ
is the spacial integral around the test particle.

The force on the static test BSP dHsp has its origin at the pairs of symmetric

and opposed transversal angular momentums generated by the longitudinal angular

momentum of the fundamental particles of the two static particles, when they cross.
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Pairs of symmetric and opposed transversal angular momentums are also generated

by a BSP that moves with the speed v.

We now imagine an BSP that is accelerated in the time ∆t by the transversal

angular momentums Jn of its regenerating fundamental particles from v = 0 to v = k c

with k < 1, and then returned by an external force to its original position with v = 0

in the time ∆t→ ∞.

We then have∫ ∞

rr

¯dHn =

∫ ∞

rr

¯dHn(v = k c)−
∫ ∞

rr

¯dHn(v = 0) = ∆

∫ ∞

rr

¯dHn (219)

because∫ ∞

rr

¯dHn(v = k c) =

∫ ∞

rr

¯dHn and

∫ ∞

rr

¯dHn(v = 0) = 0 (220)

We now introduce (219), that gives us pairs of symmetrical opposed transversal

angular momentums in eq.(218) in considering, that the vector ¯dHn is constant and

tangential along a torus with an axis that goes through the two BSPs. The resulting

force is the induced force on the probe BSP by the moving BSP and we call it dFi.

dFi =
1

c

∮
d̄l

2πR
·

{
∆

∆t

∫ ∞

rr

¯dHn

∫ ∞

rp

dHsp

}
(221)

Now we generalize the expression to dynamic processes where the vector ¯dHn

changes in time and in space and get

dFi =
1

c

∮
d̄l

2πR
·

{
d

dt

∫ ∞

rr

¯dHn

∫ ∞

rp

dHsp

}
(222)

This expression of the force as a function of a closed path integral of a timely

changing variable is called induced force and is the basis for the description of all

dynamic processes that will be analyzed in the section 7 for dynamic laws.

Note: It has still to be determined if an equalization factor is required for the

equation of the induced linear momentum to match with experimental data.

4.7 Field divergence of a static complex SP.

We start with the expression of the field for a complex SP that is defined as

dFs =
dF̄2

∆n2

= ∆n1
a

c

1

∆t

∣∣∣∣∣
∫ ∞

rr1

dHe1 s̄1 ×
∫ ∞

rr2

dHs2 s̄2

∣∣∣∣∣ (223)
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Through calculations in sec. 4.1.1 we arrived to the following results for d≫ ro:

1. The inverse proportionality of the two vectors
∫
dHe1 and

∫
dHs2 to their respec-

tive rr1 and rr2 results in an inverse proportionality to the distance d 2 for the

force F2.

2. The proportionality ∆t = Kro1 ro2 , with K = 5.42713 · 10 4.

According to eq. (200) the field Fs can be written with ∆n2 = 1 and m1 = m2 as

Fs = 2.5326 · 102 ∆n · m
d 2

(224)

Now we define the divergence of the field Fs as

divFs = lim
V→0

∮
Fs dA

V
(225)

With A the area of a sphere with centrum in ∆n ·m and V its volume we get

divFs = 4π · 2.5326 · 102 ∆n m

V
= 3.1826 · 103 ∆n ρm (226)

where ρm is the masse density of a positive or negative basic subatomic particle.

4.8 Balance of energy, rotational momentum and linear mo-

mentum between two static BSPs.

4.8.1 Balance of energy.

The energy νJe1 stored in an emitted fundamental particle of BSP 1 with v = 0 is

passed to a regenerating fundamental particle of the same BSP 1 when they meet, so

that

νJe1 = νJs1 (227)

The concept is shown in Fig. 37.

The energy νJs1 is then split in longitudinal and transversal components when it

meets with regenerating fundamental particles of the other BSP (2) so that

νJs1 = νJ (s)
s1

+ νJ (s)
n1

(228)

The energy emitted by the BSP (1) is returned to the same BSP (1) and we can

write
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Figure 37: Rotational momentum balance between two static basic subatomic particles

νJe1 = νJ (s)
s1

+ νJ (s)
n1

(229)

The same process is valid for the other BSP (2).

The energy balance can also be explained through an energy interchange between

the two static BSPs in, that the energy νJe1 stored in an emitted fundamental particle

of BSP 1 with v = 0 is splitted and passed to a regenerating fundamental particle of

BSP 2 when they meet, so that

νJe1 = νJ (s)
s2

+ νJ (s)
n2

(230)

Because of symmetry, there is an emitted FP of BSP 2 that meets a regenerating

FP of BSP 1 with the same angle β that carries the same energy.

4.8.2 Balance of rotational momentum.

The concept is shown in Fig. 37.

On the drawing we see that on ray 2
′
all the longitudinal rotational momentums
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are opposed to ray 1. The same applies for the rays 1
′
and 2.

The transversal rotational momentums have opposed rotational momentums on the

rays 1 and 2 and the rays 1
′
and 2

′
.

J̄ (s)
n1

= −J̄ (s)
n2

J̄ (s) ′

n1
= −J̄ (s) ′

n2
(231)

J̄ (s) ′

s1
= −J̄ (s)

s2
J̄ (s)
s1

̸= J̄ (s)
s2

J̄ (s) ′

s1
̸= J̄ (s) ′

s2
(232)

J̄
′

e1
= −J̄e2 (233)

Opposed rotational momentums are constantly generated on one place, and at the

same time, equal opposed rotational momentums are destroyed on an other place, so

that the sum of all rotational momentums is always zero.

4.8.3 Balance of linear momentum.

As already exposed, the linear momentum is a characteristic of BSPs, generated by

rotational momentums of fundamental particles that comply with defined symmetry

conditions. The concept is shown in Fig. 38.

Because of symmetry we have for two BSPs

dp1 =
a

c

∣∣∣∣∣
∫ ∞

rr1

dHs1 s̄1 ×
∫ ∞

rr2

dHs2 s̄2

∣∣∣∣∣ = a

c

∣∣∣∣∣
∫ ∞

rr2

dHs2 s̄2 ×
∫ ∞

rr1

dHs1 s̄1

∣∣∣∣∣ = dp2

(234)

For complex SPs that are formed by more than one BSP we have

dp1 = a
∆n1 ∆n2

c

∣∣∣∣∣
∫ ∞

rr1

dHs1 s̄1 ×
∫ ∞

rr2

dHs2 s̄2

∣∣∣∣∣ (235)

dp2 = a
∆n2 ∆n1

c

∣∣∣∣∣
∫ ∞

rr2

dHs2 s̄2 ×
∫ ∞

rr1

dHs1 s̄1

∣∣∣∣∣ (236)

resulting that

dp1 = dp2 (237)

with ∆ni = n+
i − n−

i the difference between the number of positive and negative

BSPs that form the complex particle i.
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Figure 38: Balance of linear momentums between two
static basic subatomic particles

4.9 Energy of transversal rotational momentums Jn at a torus

with an axis that coincides with a current of BSPs with

speed v.

We start with the energy equation for transversal rotational momentums Jn of a BSPs

that moves with v.

dEn =
E2
p√

E2
0 + E2

p

c

2 v

∣∣∣∣ v̄s
|v̄e|

× v̄r
|v̄r|

∣∣∣∣ we dφ (238)

with

we =
ro
r2e
dre and Ep = c

m v√
1− v2

c2

(239)

For decelerating BSPs we have

vr → ∞ and tr → 0 (240)
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re = rr dre = drr φ = ψ dφ = dψ (241)

and for dEn we can write

dEn =
E2
p√

E2
0 + E2

p

c

2 v

∣∣∣∣ v̄s
|v̄e|

× v̄r
|v̄r|

∣∣∣∣ ror2r drr dψ (242)

with

vs =
√
v2e + v2 − 2 ve v cos ψ (243)

For v << c we get

dEn = m v2 dκ = m v2
1

2

ro
r2r
drr sinψ dψ

dγ

2π
(244)

The cumulate energy is∫ ∞

rr

dEn = m v2
1

2

ro
rr

sinψ dψ
dγ

2π
(245)

The concept is shown in Fig. 39.

y yd
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Figure 39: Geometric relations of a torus for a straight
conductor with a current of basic subatomic particles Im
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From Fig 39 we have that

rr dψ = dlψ dl = sinψ dlψ → sinψ dψ =
dl

rr
(246)

We get for the cumulated energy∫ ∞

rr

dEn = m v2
1

4π

ro
r2r
dl dγ = dEn(cum) (247)

For ρx the linear density of BSPs in the conductor, where ρx = Nx/∆x with Nx the

number of BSPs in ∆x, we get the cumulated energy for Nx BSPs∫ ∞

rr

dEn = ρx ∆x m v2
1

4π

ro
r2r
dl dγ (248)

To get the cumulated energy for all BSPs of a stright conductor with infinite lenght

we write

∫ ∞

−∞

∫ ∞

rr

dEn = ρx m v2
1

4π
ro dl dγ

∫ ∞

−∞

∆x

X
X = r2r = h2 + x2 (249)

resulting ∫ ∞

−∞

∫ ∞

rr

dEn = ρx m v2
1

4

ro
h
dl dγ = dEn(cum,∞) (250)

if we multiply and divide the expression with h, what leaves the expression un-

changed, we see that the equation represents the cumulated energy for the area dA =

h dl dγ.

Note a)

Transversal rotational momenta J̄n from regenerating fundamental particles of pos-

itive or negative BSPs, that move in the same direction in the conductor, have the same

rotation sense. It is not possible to know from the rotation sense of the transversal

rotational momenta J̄n if the BSPs that move in the same direction have a positive or

negative sign.

If we change the direction of the current of positive or negative BSPs in the con-

ductor, the rotation sense of the transversal rotational momenta J̄n changes.

Only the rotation sense of the longitudinal rotational momenta J̄s shows, if the

BSPs that move in the same direction, have a positive or negative sign.

Note b)

The relation between the masse current Im and the electric current Ic is defined by

the following equations:
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Ic = Nx q v = 1, 60217733 · 10−19 Nx v

[
C

s

]
(251)

Im = Nx m v = 9, 1093897 · 10−31 Nx v

[
kg

s

]
(252)

with q the elementary charge in Coulomb and m the rest masse of the electron in

kilogram.

We get that

Im =
m

q
Ic = 5, 685631378 · 10−12 Ic

[
kg

s

]
(253)

4.10 Current flow of BSPs at an infinite straight conductor.

4.10.1 Current flow through a closed loop enclosing an infinite straight

conductor.

We start with eq. (250) switching to the cumulated dH̄n field∫ ∞

−∞

∫ ∞

rr

dH̄n = ρx [m v2]1/2
1

4

ro
h
dl dγ n̄ (254)

With the mass current Im = ρx m v and with constant ∆l and ∆γ we get∫ ∞

−∞

∫ ∞

rr

dH̄n =
Im√
m

1

4

ro
h

∆l ∆γ n̄ = dH̄n(cum,∞) (255)

We now build the close loop integral∮
dH̄n(cum,∞) · dl̄γ = dHn(cum,∞) h

∫ 2π

0

dγ dl̄γ = h dγ n̄ (256)

We get

∮
dH̄n(cum,∞) · dl̄γ = KH Im KH =

π√
m

1

2
ro ∆l ∆γ = constant (257)

If we compare with the mainstream expression∮
H̄c · dl̄γ = Ic (258)

we conclude that
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dH̄n(cum,∞) ≡ H̄c and Im ≡ Ic (259)

4.10.2 Current flow through a closed loop outside an infinite straight con-

ductor.

To obtain the current flow outside an infinite straight conductor we place the closed

path integral outside the conductor.

The concept is shown in Fig. 40.
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Figure 40: Geometric relations for the calculation of the closed path integral outside
a straight conductor with a current of basic subatomic particles Im

We start with equation (255) which is∫ ∞

−∞

∫ ∞

rr

dH̄n =
Im√
m

1

4

ro
h

∆l ∆γ n̄ = dH̄n(cum,∞) (260)

that we can write as

dH̄n(cum,∞) =
K

h
n̄ K =

Im√
m

1

4
ro ∆l ∆γ (261)

As dH̄n(cum,∞) ∝ dH̄n we use the nomenclature from Fig. 40 in what follows

dH̄nt = dHn sinµ t̄ h2 = h2o +R2 − 2 ho R cos ε µ = σ − π

2
(262)
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with

σ =
π

2
− ε

2
+ arctan

[
ho −R

ho +R
cot

ε

2

]
(263)

.

For the closed path integral we get∮
dH̄nt · ds̄ = 0 with dH̄n(h) =

K

h
n̄ (264)

For an other relation between dHn and h we have∮
dH̄nt · ds̄ ̸= 0 with dH̄n(h) ̸=

K

h
n̄ (265)

The finding that only with a relation of the type dHn(h) =
K
h
the external closed

path integral is zero is important for the analysis of the laws that describe processes

that are variable in time.

4.11 Linear momentum density on two infinite straight par-

allel conductors that have mass currents Im1 and Im2.

We start with eq. (250) from sec. 4.9 wich represents the cumulated energy for the

area dS = dl h dγ.∫ ∞

−∞

∫ ∞

rr

dEn = ρx m v2
1

4

ro
h
dl dγ = dEn(cum,∞) (266)

Now we switch to the cumulated field of d
′
Hn(cum,∞) defining H

′
n as

H
′

n =

[
m v2

dl

h

]1/2
(267)

and get

∫ ∞

−∞

∫ ∞

rr

d
′
Hn = ρx

[
m v2

dl

h

]1/2
ro
4
dγ = d

′
Hn(cum,∞) (268)

We now rearrange the equation to get an expression for the current Im = ρx m v

and get

d
′
Hn(cum,∞) =

Im
4
√
m

√
dl

h
ro dγ (269)

We now take two parallel conductors at the distance d with mass currents Im1
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and Im2 that have transversal rotational momentum Jn1 and Jn2 at the distances h1

respective h2. Because of the existing symmetry the rotational momenta J2 that are

generated according to postulate 7 form pairs that comply with the requirements for

linear momentum.

J̄2 = + sign(J̄s1) sign(J̄s2) (
√
Jn1 n̄1 ×

√
Jn2 n̄2) (270)

with n̄1 and n̄2 unit vectors that are orthogonal respectively to the area formed by

Im1 and h1, and the area formed by Im2 und h2.

The concept is shown in Fig. 41
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Figure 41: Angle β between the transversal angular momentum of regenerating
fundamental particles of two straight conductors with currents Imi

The energy dEph associated with J2 is

dEph =

∣∣∣∣∣
∫ ∞

x=−∞

∫ ∞

rr1

d
′
Hn1 n̄1 ×

∫ ∞

x=−∞

∫ ∞

rr2

d
′
Hn2 n̄2

∣∣∣∣∣ (271)

and the linear momentum
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dph =
1

c
dEph (272)

We get with m1 = m2 = m and ro1 = ro2 = ro and dl1 = dl2 = dl

dEph =
Im1 Im2

16

r2o
m

dγ1 dγ2√
h1 h2

|n̄1 × n̄2| dl (273)

with

|n̄1 × n̄2| = sin β = sin(γ1 − γ2) (274)

With the following geometric conditions already defined in sec. 4.2

R = h1 sin γ1 R = h2 sin γ2 − h1 cos γ1 + h2 cos γ2 = d (275)

we get

h1 h2 = d 2 sin γ1 sin γ2
[ sin γ1 cos γ2 − sin γ2 cos γ1 ]2

(276)

As

sin γ1 cos γ2 − sin γ2 cos γ1 = sin(γ1 − γ2) = sin β (277)

we obtain

dEph =
Im1 Im2

16

r2o
m

sin2(γ1 − γ2)

d
√
sin γ1 sin γ2

dγ1 dγ2 dl (278)

The differential force density is given by

dF

∆l
=

dph
∆l dt

=
1

c dl ∆t
dEph (279)

and we get

dF

∆l
=

1

c ∆t

Im1 Im2

16

r2o
m d

sin2(γ1 − γ2)√
sin γ1 sin γ2

dγ1 dγ2 (280)

The total force density we obtain by integrating over the whole space

F

∆l
=

1

c ∆t

r2o
16 m

Im1 Im2

d

∫ γ2max

γ2min

∫ γ1max

γ1min

sin2(γ1 − γ2)√
sin γ1 sin γ2

dγ1 dγ2 (281)

In eq. (281) we can see the inverse proportionality to the distance d between the

parallel conductors.

The integration limits are similar to the integration limits for two static BSPs shown
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in Fig. 28.

The numerical integration of eq. (281) gives a curve similar to the curve of Fig. 29

with the difference, that for d≫ ro the curve decreases with 1/d instead of 1/d2.

The double integral gives for d≫ ro∫ γ2max

γ2min

∫ γ1max

γ1min

sin2(γ1 − γ2)√
sin γ1 sin γ2

dγ1 dγ2 =

∫ ∫
Ampere

= 5.8731 (282)

Finally we get

F

∆l
= b

5.8731

c ∆t

r2o
16 m

Im1 Im2

d
(283)

where b is a tuning factor we introduce who’s function is explained later.

The reference force density we calculate with the mainstream equation of the theory

of electricity and magnetism

Fc
∆l

=
µo
2 π

Ic1 Ic2
d

(284)

with Ic the current in Ampere.

The relation between the mass current Im and the electric current Ic is given by

Im =
m

q
Ic = 5, 685631378 · 10−12 Ic

[
kg

s

]
(285)

with m the electron mass in kilogram and q the elementary charge in Coulomb.

If we make the two total force densities equal for d≫ ro

F

∆l
=
Fc
∆l

for d≫ ro (286)

we get for b = 0.25 the same K = 5.4274 · 104 s/m2 we got for two static BSPs.

The advantage to make K = 5.4274 · 104 s/m2 we see in sec. 9.1 resulting

4 π2 m

K
= h with ′h′ the P lanck Constant (287)

The Ampere law for the mass currents takes the form

F

∆l
= KA

Im1 Im2

d
with KA = b

5.8731

c ∆t

r2o
16 m

= 6.18706 · 1015 m

kg
(288)

The energy density flow from mass-current Im1 to Im2 is equal to the energy density

flow from mass-current Im2 to Im1
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Eph,1
∆l

=
F1 c

∆l
=
F2 c

∆l
=
Eph,2
∆l

(289)

Note: There is an important difference when switching from the cumulated energy

equation to the dH field to arrive to the Coulomb or the Ampere equations.

• To arrive to the Coulomb law we simply passed from∫ ∞

r

dE = E

∫ ∞

r

dκ to

∫ ∞

r

dH =
√
E

∫ ∞

r

dκ (290)

to build the cross product and obtain the inverse d 2 law from the Coulomb law.

• To arrive to the Ampere law we had to pass from∫ ∞

r

dE = E

∫ ∞

r

dκ to

∫ ∞

r

d
′
H =

√
E

∫ ∞

r

dκ
′

(291)

with ∫ ∞

r

d
′
κ =

1

2

√
ro
r

sinφ dφ
dγ

2π
(292)

to build the cross product and obtain the inverse d law from the Ampere law.

Force density as a function of the power.

Now we express the force density as a function of the powers stored in the regener-

ating transversal angular momentum of the BSPs of the two conductors.

We start with eq. (281) that we write with Im = ρx m v

F

∆l
=

1

c ∆t

r2o
16 m

ρx1 m v1 ρx2 m2 v

d

∫ ∫
Ampere

(293)

or

F

∆l
=

1

16 m c

ro1 ρx1 ro2 ρx2
d

√
m v21
∆1t

√
m v22
∆2t

∫ ∫
Ampere

(294)

where

∆t = K ro1 ro2 =
√
K r2o1

√
K r2o2 =

√
∆1t

√
∆2t (295)

and with En = m v2 we get

F

∆l
=

1

16 m c

ro1 ρx1 ro2 ρx2
d

√
En1 νn1

√
En2 νn2

∫ ∫
Ampere

(296)

where νni
= 1/∆it. Finally we get with Pn = En νn
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F

∆l
=

1

16 m c

ro1 ρx1 ro2 ρx2
d

√
Pn1

√
Pn2

∫ ∫
Ampere

(297)

The dimensionless factor ro ρx = Nx ro/∆x gives the density of the BSPs with

radius ro at the conductor.

Sign convention between currents and angular momenta.

We have seen that the transversal angular momentum J̄n is oriented according the

right screw rule in the direction of the velocity vector v̄ of the BSPs and is independent

of the charge of the BSPs. It is not possible to know the charge of the moving BSPs

based on the direction the transversal angular momentum J̄n has. The direction of the

transversal angular momentum J̄n gives the direction of the linear momentum dp̄.

The equation of postulate 7 gives the opposed transversal angular momentum J̄2

generated by the BSPs of the current Im1 and the BSPs of current Im2 which generate

the linear momentum dp̄2 on the BSPs of current Im2 .

J̄2 = sign(J̄e1) sign(J̄e2) (
√
Jn1 n̄1 ×

√
Jn2 n̄2) (298)

The sign of the linear momentum dp̄2 is given by

sign(dp̄2) = sign(J̄2) (299)

The concept is shown in Fig. 42. See also Fig. 41
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Figure 42: Sign convention for the calculation of the linear momentum dp
for two straight conductors with currents Imi

4.11.1 Invariance of the Ampere force between two parallel conductors.

In Fig. 43 we have parallel negative BSPs moving at a distance d with the speeds

v1 and v2 producing the currents I−m1
and I−m2

relative to a coordinate system that

is fix with the positive BSPs that regenerate the negative moving BSPs. At point

P the transversal angular momentum of the regenerating FPs will interact according

postulate 7 and generate the opposed forces dF−
1 and dF−

2 . After the integration of all

regenerating positive BSPs of the whole space we get the forces F−
1 and F−

2 .

If we now assume that v1 = v2 = v and that the coordinate system is fix with the

moving negative BSPs we have the case of Fig. 44 where the positive BSPs are moving

at a distance d producing the currents I+m1
and I+m2

relative to a coordinate system

that is fix with the negative BSPs that regenerate the positive moving BSPs. At point

P the transversal angular momentum of the regenerating FPs will interact according

postulate 7 and generate the opposed forces dF+
1 and dF+

2 . After the integration of all

regenerating negative BSPs of the whole space we get the forces F+
1 and F+

2 . Due to

the symmetry the forces F−
1 and F−

2 are equal to F+
1 and F+

2 provided that v1 = v2 = v.

Note: The selection of a coordinate system implies the definition of the environ-

ment that provides the regenerating BSPs.
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Fig. 43 and Fig. 44 show the conservation of the Ampere force for inertial coordi-

nate systems.
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4.11.2 Energy and rotational momentum balance for two parallel conduc-

tors.

Because of the constant velocities of the BSPs at the two conductors and the existing

symmetry, the balances of energy and rotational momentums are reduced to the two

following already analyzed cases:

• One BSP with constant speed at sec. 2.11

• Two static BSPs at sec. 4.8

The rotational momentums J̄
(n)
i are generated as opposed pairs so that the total

sum of all rotational momentums is zero.

4.11.3 Calculations

The calculations were made assuming two infinite parallel conductors with currents of

decelerating BSPs. To calculate the momentum time we consider that dph = ph and

the momentum time

∆t =
ph
Fc

(300)

was calculated with

me = 9.1093897 · 10−31 kg

qe = 1.60217733 · 10−19 A s

µo = 4 π · 10−7 V s
A m

ve = c

vr = 1030 m
s

ro = 10−16 m

For the radius ro the same value as for the calculations for two static BSPs was

used.

Results.

The results show that for a given radius ro and for d≫ ro the momentum time ∆t

is the same and constant for two static BSPs and for two infinite straight conductors.

The curve of ∆t has the same shape as for two static BSPs inducing the conclusion,

that here also the time ∆t is a constant for all distances d, even for d ≪ ro (see Fig.

30).
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The following Fig. 45 shows a schematic representation of the generation of the

linear momentum between two conductors and between a moving BSP and an oriented

transversal field.

Figure 45: Generation of the linear momentum between two conductors and between
a moving BSP and an oriented transversal field
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4.12 Momentum on a BSP that moves with vt in a space with

oriented transversal rotational momentums.

4.12.1 General considerations

If a BSP moves with the speed vt in a space with fundamental particles that all have

transversal rotational momentums J̄nh
oriented in the same direction, then the TRMs

J̄nt of the regenerating fundamental particles of the BSP and the oriented TRMs of

the space will generate rotational momentums according to postulate 7.

J̄t = − sign(J̄st) sign(J̄sh) (
√
Jnt n̄t ×

√
Jnh

n̄h) (301)

J̄nt represents the TRMs of the moving BSP.

J̄nh
represents the oriented TRMs in the space.

J̄st und J̄sh are the corresponding longitudinal RMs that define the sign and will

be omitted in the following analysis.

The concept is shown in Fig. 46, where the current that generates the field J̄nh
and

the corresponding regenerating longitudinal field J̄sh , are not shown. It is important

to note, that the direction of the resulting force on the moving BSP is also defined by

the sign of the field J̄sh not shown in the figure, and not only by the direction of the

field J̄nh
. The field J̄nh

shown in Fig. 46 can be generated by a current of positive or

negative BSPs moving in the direction of vt.

If we decompose the vector n̄h in a component n̄
∥
h parallel to the velocity vt and a

component n̄⊥
h orthogonal to vt we get

J̄t =
√
Jnt n̄t ×

√
Jnh

(n̄
∥
h + n⊥

h ) (302)

The components
√
Jnh

n̄
∥
h parallel to vt generate components of the rotational mo-

mentum J̄t that don’t comply with the requirements for generation of linear momentum

dp, namely, that they form pairs of opposed rotational momentums.

The components
√
Jnh

n̄⊥
h orthogonal to vt on the contrary generate components

of the rotational momentums J̄t that comply with the requirements for generation of

linear momentum dp. The direction of the momentum dp is orthogonal to vt and n̄
⊥
h .

The so generated momentum is responsible for a lateral displacement of the BSP during

the regeneration.

J̄⊥
t =

√
Jnt n̄t ×

√
Jnh

n̄⊥
h (303)

J̄⊥
t represents the opposed rotational momentum that comply with the requirements
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Figure 46: Generation of a pair of opposed J⊥
t on a basic subatomic particle

that moves with vt in a field of oriented J⊥
nh

for generation of linear momentum p̄R radially to to the resulting circular movement.

If we multiply both sides of the equation with
√
νnt dκnt and

√
νnh

dκnh
and build

then the sum of dHnt and dHnh
of the regenerating fundamental particles, we get for

the energy dEpR responsible for the radial impulse

dEpR =

∣∣∣∣∣
∫ ∞

rrt

dHnt n̄t ×
∫ ∞

rrh

dHnh
n̄⊥
h

∣∣∣∣∣ (304)

with

dHni
=

√
νni

Jni
dκni

(305)

dHnh
can have its origin at a current through a straight conductor that is parallel

to the y axis in the xy plane at the distance h from the moving BSP.
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The total linear momentum in radial direction we get by the spatial integration of

dEpR .

pR =
1

c
EpR =

1

c

∫
V

dEpR (306)

The BSP has constant tangential vt and radial vR velocities.

vt =
Ept
m c

and vR =
EpR
m c

(307)

The force on a BSP is

FL =
dpR
dt

=
pR
∆t

=
1

c

1

∆t
EpR =

1

c

1

∆t

∫
V

dEpR (308)

or

FL =
1

c

1

∆t

∫
V

∣∣∣∣∣
∫ ∞

rrt

dHnt n̄t ×
∫ ∞

rrh

dHnh
n̄⊥
h

∣∣∣∣∣ (309)

The differential dpR is equal to the momentum pR because the momentum is con-

stantly reduced to zero.

For complex particles composed of more than one BSP the force is

FL = ∆n
pR
∆t

(310)

with ∆n = n+ − n− where n+ are the number of positive and n− the number of

negative BSPs that compose the complex SP. As n+ and n− are integer numbers the

force is quantified.

The known Lorentz force is

F̄c = Q v̄t × B̄ (311)

with F̄c the Lorentz force, Q the electric charge and B̄ the magnetic flux density.

The general expression for the linear momentum due to the transversal fields of two

moving BSPs is

dp s̄R =
1

c

∮
R

{
d̄l · (n̄1 × n̄2)

2πR

∫ ∞

r1

Hn1 dκr1

∫ ∞

r2

Hn2 dκr2

}
s̄R (312)

The concept is shown in Fig. 47
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4.12.2 Lorentz law.

We start with eq. (255) from sec. 4.10.1 which gives the dHn field at the distance h

and the interval dl generated by a stright infinite current Im.∫ ∞

−∞

∫ ∞

rr

dH̄n =
Im√
m

1

4

ro
h
dl dγ n̄ = dH̄n(cum,∞) (313)

and with eq. (281) from sec. 4.11 which gives us the force density between two

stright infinite currents Im1 and Im2 .

F

∆l
=

b

c ∆t

r2o
16 m

Im1 Im2

d

∫ ∫
Ampere

(314)

with b the tuning factor introduced in eq. (283).

The dHn field at dl generated by Im1 is with eq. (313)

dH̄n(cum,∞) =
Im1√
m

1

4

ro
h1

dl dγ n̄ (315)

The concept is shown in Fig. 48

For h2 = 0 we have that h1 = d and dl overlaps with Im2 and the dHn field generated

by Im1 at dl is perpendicular to Im2 . It is

Im1 =
4 d

√
m

ro dl dγ
dHn(cum,∞) (316)
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The current Im2 can be expressed as a function of the velocity vt of its BSPs as

Im2 = ρx m vt where ρx = N/∆x. If we now concentrate on one BSP of Im2 we have

that N = 1 and ∆x = ro resulting Im2 = m vt/ro. We now introduce Im1 and Im2 in

eq. (314) and get

F =
b

c ∆t

√
m vt dHn

1

4 dγ

∫ ∫
Ampere

(317)

Note: For simplicity reasons we used the notation dHn instead of dHn(cum,∞).

The equation has two variables dγ and dHn that are free and if fixing one we fix

the other. We decide to make

1

4 dγ

∫ ∫
Ampere

= 1 (318)

In Fig. 46 we have defined the angular momentum J̄⊥
nh

as the component per-

pendicular to the speed v̄t. It is J⊥
nh

= Jnh
sinµ, with µ the angle between v̄t and

J̄nh
.

For the case of two parallel currents the dHn field from eq. (317) is perpendicular

to the current Im2 and we express it now in a more evident form as dHn = dH⊥
nh
. It is

dH⊥
nh

= dHnh
sinµ, with µ the angle between v̄t and dH̄nh

.

The relation between the angular momenta Jnh
and the dHnh

fields is

dHnh
=

√
Jnh

ν dH⊥
nh

=
√
J⊥
nh
ν (319)

We get

F̄ =
b

c ∆t

√
m vt dH

⊥
nh

(n̄t × n̄⊥
h ) =

b

c ∆t

√
m v̄t × dH̄nh

(320)

The force F is perpendicular to the speed v̄t and the dH̄⊥
nh

field and describes the

Lorentz force
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F̄c = q µo v̄t × H̄c = q µo vt Hc sinµ n̄ (321)

We make F = Fc for µ = π/2 and get

b

c ∆t

√
m vt dHn = q µo vt Hc with Hc =

1

2π

Ic
d

(322)

The following equations for the conversion from mainstream to the present approach

result

dHn =
q µo c ∆t

b
√
m

Hc =
q µo c ∆t

b
√
m

1

2π

Ic
d

(323)

From sec. 2.16.1 we have that

dHn =

√
1

2
µo dV dκ H (324)

where H is the magnetic field strength from standard theory.

If we make Hc = H we get that

dV dκ = 2
q2 µo c

2 ∆2t

b2 m
= 6.66 · 10−36 m3 (325)

4.13 Momentum on a BSP that moves with light speed through

a space with oriented transversal rotational momentums.

When a BSP moves with light speed through a space with fundamental particles with

oriented transversal rotational momentums J̄nh
as shown in Fig. 46, in the equation

J̄t = − sign(J̄st) sign(J̄sh) (
√
Jnt n̄t ×

√
Jnh

n̄h) (326)

the sign of the missing LRM J̄st is not defined.

The direction of the pairs of opposed TRMs J̄t that comply with the requirements

for linear momentum is not defined and therefore also the direction of the linear mo-

mentum generated is undefined.

Note: Each angular momentum J̄1 from a FP1 of BSP1 has its opposed −J̄1 on

an other FP
′
1 of BSP1, they are entangled. If the angular momentum of FP1 interacts

with an angular momentum of a FP2 of BSP2, then necessarily the angular momentum

of FP
′
1 must interact with the angular momentum of another FP

′
2 of BSP2 so that

opposed angular momentum are generated.
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4.14 Momentum on complex particles that move with the

speed v in a space with oriented transversal rotational

momentums.

Complex particles are formed by more than one BSP that are forced in opposed di-

rections orthogonal to the moving direction, according to their signs, when they move

through a space with oriented TRMs. Thus a polarization of the positive and negative

BSPs inside the complex particle occur. There are two basic cases:

• If the complex particle has the same number of positive and negative BSPs (neu-

tron) the sum of momentum orthogonal to the moving direction compensate and

the complex particle maintain its straight direction.

• If the complex particle has different numbers of positive and negative BSPs (pro-

ton) the sum of momentum orthogonal to the moving direction does not com-

pensate and the complex particle deviate from its straight direction.

4.15 ∆t as a function of the radius ro of the BSP.

In the equations for the momentum responsible for the force between two static BSPs

and the force on a BSP that moves in a field of oriented transversal rotational momen-

tums, the radius ro of the BSPs appears. The momentum time ∆t as a function of the

radius ro is given by

∆t = K r2o with K = 5.42713 · 104
[ s

m2

]
(327)

From the calculations for two static BSPs and for two straight parallel conductors

we have that

∆t = 5.4274 · 10−28 sec for ro = 10−16 and 0 ≤ d ≤ ∞ (328)

Note: Calculations and plots originally were made for an energy distribution (see

sec. 2.3)

dκ =
c

2 v

∣∣∣∣ v̄s
|v̄e|

× v̄r
|v̄r|

∣∣∣∣ W sinφ dφ (329)

and changed to

dκ =
c

2 v

∣∣∣∣ v̄s
|v̄e|

× v̄r
|v̄r|

∣∣∣∣ W dφ (330)
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which allows to express the Coulomb force as an rotor of the dHn field (see sec.

4.6). This explains, why there is a difference of approx. a factor 2 between the values

of the plots of sec. 4.1 and values calculated with the new energy distribution.

We now analyze the two following expressions for the calculation of the force

1. Force between two static BSPs.

dF =
a

c ∆t
dE(s)

p with dE(s)
p =

∣∣∣∣∣
∫ ∞

rr1

dHe1 s̄1 ×
∫ ∞

rr2

dHs2 s̄2

∣∣∣∣∣ (331)

and

dHs = Hs dκ with dκ =
2 c

π v

∣∣∣∣ v̄s
|v̄e|

× v̄r
|v̄r|

∣∣∣∣ ror2r dφ (332)

We see that dE
(s)
p is proportional to r2o. With ∆t = K r2o also proportional to

r2o, the equation for the force dF is independent of the radius ro of the BSPs.

As complex particles like protons, atomic nucleus, etc. are formed by the sum of

BSPs, the attraction force between them is also independent of their radii.

2. Force between two straight parallel currents of BSPs.

dF =
1

c ∆t
dEph (333)

with

dEph =

∣∣∣∣∣
∫ ∞

x=−∞

∫ ∞

rr1

dHn1 n̄1 ×
∫ ∞

x=−∞

∫ ∞

rr2

dHn2 n̄2

∣∣∣∣∣ (334)

and

dHn = Hn dκ with dκ =
2 c

π v

∣∣∣∣ v̄s
|v̄e|

× v̄r
|v̄r|

∣∣∣∣ ror2r dφ (335)

We see that the same considerations as for the two static BSPs are valid with the

same result, that the force dF is independent of the radii ro of the BSPs.

These results are conform with the two basic equations of classic physics for the

force between two static BSPs and the force density between two parallel straight

conductors of BSPs, that are also independent of their radii.
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F =
1

4 π ϵo

Q1 Q2

d 2
and

F

l
=

µo
2 π

Ic1 Ic2
d

(336)

If we now observe the following derived equations for the Coulomb-force

F2 =
4 c a

π2 K

∆n1

√
m ∆n2

√
m

d 2

∫ φ1max

φ1min

∫ φ2max

φ2min

sinφ1 sinφ2 sin3(φ1 − φ2) dφ2 dφ1

(337)

and the force density between two parallel straight conductors of BSPs

F

∆l
=

1

64 m c K

Im1 Im2

d

∫ γ2max

γ2min

∫ γ1max

γ1min

sin2(γ1 − γ2)√
sin γ1 sin γ2

dγ1 dγ2 (338)

and compare them with the basic equations of classic physics we see, that the

permittivity ϵo and the permeability µo are replaced by the constant K.

4.16 Considerations on the quantized momentum time ∆t.

The momentum time ∆t during which reactions between two BSPs occur is

∆t = K ro1 ro2 (339)

The displacement ∆d of a BSP in the time ∆t due to the presence of an other BSP

occurs with the speed k c with k ̸= c, and takes place each time a pair of regenerating

fundamental particles that comply with the requirements for linear momentum arrive

at the nucleus of the BSP.

The displacement is given by

∆d = k c ∆t = k c K r2o for ro1 = ro2 (340)

The linear momentum is

p = F ∆t = F K r2o (341)

If one of the particles is a complex particle with n+ positive and n− negative BSPs,

the momentum is

p = (n+ − n−) F ∆t = (n+ − n−) F K r2o (342)

with F the force between the two particles at the distance d.
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4.17 Momentum between BSPs that move with light speed.

At BSPs that move with light speed the longitudinal rotational momentum J̄e = 0 and

J̄s = 0 and therefore dHe = 0 and dHs = 0.

The direction of the vector products of the transversal rotational momentums J̄n of

two BSPs that move with light speed, according postulate 7, are not defined because

the longitudinal rotational momentums J̄s = 0

J̄
(n)
1 = ± (

√
Jn1 n̄1 ×

√
Jn2 n̄2) (343)

We get that

dE(n)
p = | dHn1 n̄1 × dHn2 n̄2 | and dp =

1

c
dE(n)

p (344)

As photons are composed of a sequence of BSPs that move with light speed, the

interaction of photons is a result of the interactions of the individual components.

BSPs with light speed have fundamental particles with only transversal rotational

momentums that comply with the requirements for linear momentum. As the difference

between negative and positive BSPs is given by the rotation sense of their longitudinal

rotational momentums, which are zero for BSPs with light speed, BSPs with light

speed have no charge.

BSPs with light speed are formed of pairs of fundamental particles with opposed

transversal rotational momentums. They don’t disintegrate by emitting fundamental

particles in all directions and therefore don’t need to be regenerated. The pairs of

fundamental particles with opposed transversal rotational momentums are placed in

planes orthogonal to the moving direction or in planes containing the moving direction.

If placed in the orthogonal plane, the potential linear momentum is in the direction

or opposed to the moving direction and, if placed in the plane containing the moving

direction the potential linear momentum is transversal to the moving direction.

The closed path integral along the transversal rotational momentum is∮
d̄l · J̄n with

∑
J̄n = 0 (345)

4.18 Classification overview of stable particles and fields.

Stable particles that emit fundamental particles have to be regenerated to not disinte-

grate. They require an environment that is capable to regenerate them, an environment

where fundamental particles of the other velocity than the emitted one exist in suffi-

cient quantity. As they are regenerated, they have longitudinal rotational momentums

on their regenerating fundamental particles, and therefor, a positive or negative charge
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according to the sign of the longitudinal rotational momentums. Complex particles

without charge are formed by equal number of positive and negative charged particles.

Stable particles that don’t emit fundamental particles don’t require to be regener-

ated. As they don’t emit fundamental particles they don’t disintegrate and can move

through space without fundamental particles to regenerate them. As they are not re-

generated, they have no regenerating fundamental particles with longitudinal rotational

momentums and have therefor no charge.

There are two fundamental particles (sec.2.1) defined by their speeds (see Fig. 3).

• Fundamental particle with light speed c.

• Fundamental particle with infinity speed ∞.

The fundamental particles are subdivided according the angular momentums they

have in:

• velocity equal c and negative longitudinal angular momentum.

• velocity equal c and positive longitudinal angular momentum.

• velocity equal ∞ and negative longitudinal angular momentum.

• velocity equal ∞ and positive longitudinal angular momentum.

The basic subatomic particles are classified in v ̸= c and v = c.

Basic subatomic particles with v ̸= c are:

• accelerating electron

• decelerating electron

• accelerating positron

• decelerating positron

Basic subatomic particles with v = c (see Fig. 59 and Fig. 69) are Neutrinos which

can have the following configurations:

• pair of opposed transversal angular momentum with positive linear momentum

• pair of opposed transversal angular momentum with negative linear momentum

• pair of opposed transversal angular momentum with transversal linear momentum
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• pair of opposed longitudinal angular momentum with transversal linear momen-

tum

Stable complex subatomic particles are:

• neutron (composed of electrons and positrons and binding energy)

• proton (composed of electrons and positrons and binding energy)

• nuclei of atoms

• photon (composed of neutrinos)
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A classification of stable particles and fields is shown in Fig. 49.

mentum.angular mo

neutrino
photonconst. of 

/
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ltransversadinal and ir longituand by the

Figure 49: Classification of stable particles and fields

There are three interaction laws between fundamental particles of different BSPs,

namely,

• Vector product between longitudinal angular momentums of fundamental parti-

cles (Postulate 6).

• Vector product between transversal angular momentums of fundamental particles

(Postulate 7).

• Transfer of angular momentum between two fundamental particles (Postulate 8).

99



5 Quarks composed of electrons and positrons.

The existence of Quarks were first infered from the study of hadron spectroscopy.

Infered means that they were reconstructed from the final measured products obtained

after collisions of particles. The final products are neutrons, protons, pions, muons,

electrons, positrons, photons, and neutrinos. As neutrons, protons, pions and muons

are composed of electrons and positrons according the E&R model, the real final

products are electrons, positrons, photons and neutrinos. And as also according to the

E&R model the photon is a sequence of neutrinos, the final products are reduced to

electrons, positrons and neutrinos.

Nucleus

Nucleus

Baryon (3 Quarks)

2Meson (  Quarks)

a)

b)

A

B

B

A

C

T e e+ -=+åå

A BT N N=+

A B CT N N N=++

AN

AN

BN

BN

CN

Figure 50: Nucleus composed of quarks.

The concept is shown in Fig: 50

To explain the interpretation given with the model E&R UFT we calculate an
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example with the proton.

Example: The proton has a mass of 938.2723 MeV/c2. With the mass of an

electron or positron of 0.511 MeV/c2 we get ≈ 1837.00 electrons and positrons from

which n+ = 919 are positrons and n− = 918 electrons. The mass of the proton mp is

equal 1837 times the mass of an electron plus the binding energy.

1837 me +mbinding = mp (346)

The total number of electrons and positrons at the proton are

T = NA +NB +NC = n+ + n− = 1837 (347)

where Ni is the total namber of electrons and positrons at Quark i.

As the proton is a baryon it has three quarks with the electric charge uud. With

the SM we get the charge of the proton adding the fractional charges

u + u − d =
2

3
+

2

3
− 1

3
= 1 (348)

Charges that are a fraction of the charge of an electron or positron violate the

charge conservation principle.

The finding of the “E&R′′ model that electrons and positrons neither attract nor

repell each other when the distance between them tend to zero, allows to interprete

the charge numbers Q of quarks as the relative charge

u =

∣∣∣∣N+
i −N−

i

Ni

∣∣∣∣ and d =

∣∣∣∣N+
i −N−

i

Ni

∣∣∣∣ (349)

where N+
i and N−

i are the number of positrons and electrons at the quark i and

Ni = N+
i +N−

i and ∆Ni = N+
i −N−

i .

As the sum of the differences between electrons and positrons at each quark must

give the charge of the proton we write

u NA + u NB + d NC =
2

3
NA +

2

3
NB − 1

3
NC = 1 (350)

With equations (347) and (350) and the condition that the result must give positive

integer numbers of NA, NB and NC , we can fix arbitrarily one of them and calculate the

others. As there are many possibilities, we conclude that the distribution of electrons

and positrons on the three quarks of baryons is not constant and may vary from case

to case. For mesons the distribution is well defined because they have only two quarks.

If we fix for the moment arbitrarily NA = 499 we get

NA = 499 NB = 114.33 NC = 1223.66 (351)
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We should get integer numbers, but this is irrelevant for the moment to understand

the new interpretation and continue with the obtained results and get

∆NA =
2

3
NA = 332.66 ∆NB =

2

3
NB = 76.22 ∆NC = −1

3
NC = −407.886

(352)

or

∆NA +∆NB +∆NC = 332.66 + 76.22− 407.886 = 0.994 (353)

The rest masses of the quarks are, with me the mass of the electron

mA = NA me = 4.54558 · 10−28 kg mB = NB me = 1.03847 · 10−28 kg (354)

mC = NC me = 1.11498 · 10−27 kg (355)

Note: The rest masses mA and mB which belong to the same type u of quarks of

the proton are not equal.

As chemical elements are composed of protons and neutrons, the atomic number Z

of an element can be expressed as the sum of the ∆N of its quark constituents.

Z =
∑
i

∆Ni (356)

Note: All hadrons have a total charge equal −1, 0 or 1 while chemical elements

have charges Z ≥ 1. Quarks play a similar function at hadrons as protons and neutrons

play at chemical elements.

Now we come back to the fractional numbers of N and ∆N . If we round the

fractional numbers slightly to get integer numbers as follows

NA = 499 NB = 114 NC = 1224 to get T = 1837 (357)

∆NA = 333 ∆NB = 76 ∆NC = −408 to get
∑

∆N = 1 (358)

we get for the relative charge of the quarks

uA =

∣∣∣∣∆NA

NA

∣∣∣∣ = 0, 6673 ≈ 2

3
uB =

∣∣∣∣∆NB

NB

∣∣∣∣ = 0.6666 ≈ 2

3
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dC =

∣∣∣∣∆NC

NC

∣∣∣∣ = 0.33333 ≈ 1

3
(359)

according eq.348.

More examples:

For the π+ particle we have that n+ = 137 and n− = 136 and that it is an ud̄

particle.

T = NA +NB = n+ + n− = 273 (360)

u − d̄ =
2

3
+

1

3
= 1 (361)

With the equations

2

3
NA − 1

3
NB = 1 and NA +NB = 273 (362)

we get

NA = 92 ∆NA = u NA = 61.333 (363)

NB = 181 ∆NB = d NB = −60.333 (364)

∆NA +∆NB = 61.333− 60.333 = 1 (365)

The rest masses of the quarks are

mA = NA me = 8.3806 · 10−29 kg mB = NB me = 1.6488 · 10−28 kg (366)

For the neutron we have that n+ = 919 and n− = 919 and that it is a udd particle.

We get

T = NA +NB +NC = n+ + n− = 1838 (367)

u − d − d =
2

3
− 1

3
− 1

3
= 0 (368)
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For the Σ+ particle we have that n+ = 1164 and n− = 1163 and that it is an uus

particle.

T = NA +NB +NC = n+ + n− = 2327 (369)

u + u + s =
2

3
+

2

3
− 1

3
= 1 (370)

The distribution of electrons and positrons on the different quarks must not be

necessarilly static.

Conclusion: The Q values for the electric charge at quarks refere to the relative

charge of the quarks. There is no need to introduce fractional charges which were never

directly measured. All charges are integer multiples of the charge of an electron, which

constitutes the unit of the charge.

Note: No strong forces or gluons are necessary to hold quarks together, because

for the distance tending to zero electrons and positrons neither attract nor repel each

other. The distribution of electrons and positrons on the quarks is not a constant. The

number Ni of the u quarks of one hadron may be different because u gives only the

relative charge of a quark.

Note: The µ and τ leptons may also be composed of electrons, positrons and

neutrinos.

6 Spin of level electrons and the formation of ele-

ments

In sec. 2.1 two types of electrons and positrons were identified according the velocities

of their regenerating and emitting fundamental particles; they were named accelerating

and decelerating BSPs.

We know, that electrons in individual energy orbits must have different states which

the SM explains with two states of angular and magnetic momenta (spins). In the

present approach the two states are explained with the two types of electrons, namely

accelerating and decelerating electrons.

For each type of level electron, a corresponding opposed type of positron must

exist in the atomic nucleus, to allow that the emitted fundamental particles of one can

regenerate the other. This leads to the conclusion, that protons and neutrons are also

composed of BSPs of different types.

Neutron: Composed of 919 electrons and 919 positrons. The 919 electrons are com-

posed of 459 accelerating, 459 decelerating and 1 acc/dec electrons. The 919
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positrons are composed of 459 accelerating, 459 decelerating and 1 dec/acc positrons.

Proton: Composed of 918 electrons and 919 positrons. The 918 electrons are com-

posed of 459 accelerating and 459 decelerating electrons. The 919 positrons are

composed of 459 accelerating, 459 decelerating and 1 acc/dec positrons.

The concept is shown in Fig. 51.
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Figure 51: Neutron and proton

The definition of two types of electrons and positrons has let to protons that are

formed of BSPs that complement each other and which are of two types:

• Protons formed of accelerating positrons and decelerating electrons and

• Protons formed of decelerating positrons and accelerating electrons

The level electron associated to a proton is of the same type as the electrons of the

proton. Elements in the Periodic Table are classified according to the growing number

of protons in their nuclei and with level electrons that alternate their spin. In the

present approach the elements of the periodic table are built with alternating types of

protons and the two types of electrons with opposed spin from our standard theory are

replaced by the accelerating and decelerating electrons.

The formation of elements is shown in Fig. 52.
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Part III Dynamic Interactions

Induction between subatomic particles and deduction of the Maxwell equations.

7 Laws that describe dynamic interactions between

BSPs.

In this section the forces induced on static BSPs, caused by longitudinal and transversal

angular momenta of BSPs that move with constant speed, are derived.

The possibility to explain static laws through dynamic laws is presented.

The generation of gravitation forces is deduced and a proposal for gravitational

momenta between galaxies and black holes is made.

The force field of an oscillating dipole is derived and the irradiated energy is de-

composed in its longitudinal and transversal components.

A relation between the radius of the oscillating BSP and its energy is deduced.

The 1.Maxwell equations for the static and the far induced fields are derived.

The 2.Maxwell equation is derived and the equivalence between the vector dH̄n and

the magnetic Hertz field vector
∏̄

m is shown.

The divergence of static and induced fields are presented.

The Lorenz invariance of the deduced Maxwell-equations is presented.

7.1 Field at a point P of the space due to a BSP that moves

with an instant speed v.

The time variation of the longitudinal and transversal rotational momentums fields
¯dHs and ¯dHn at a point P , produced by a BSP that moves with an instant speed v̄ at

the x coordinate, is now analyzed.

Starting with

¯dHs = Hs dκ s̄ and ¯dHn = Hn dκ n̄ (371)

and

Hs = Hs(v) Hn = Hn(v) dκ = dκ(rr , φ) rr = rr(t) φ = φ(t) (372)

∫ ∞

rr

¯dHs = Hs

∫ ∞

rr

dκ s̄

∫ ∞

rr

¯dHn = Hn

∫ ∞

rr

dκ n̄ (373)
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we get for the time differentiation of the longitudinal field

d

dt

∫ ∞

rr

¯dHs = − d

dt
[Hs]

∫ ∞

rr

dκ s̄r − Hs
d

dt

∫ ∞

rr

dκ s̄r + Hs

∫ ∞

rr

dκ
dφ

dt
s̄φ (374)

with

dκ =
1

2

ro
r2r
drr sinφ dφ and

∫ ∞

rr

dκ =
1

2

ro
rr

sinφ dφ (375)

resulting

d

dt

∫ ∞

rr

dκ =
d

dt

∫ ∞

rr

dκ(rr) +
d

dt

∫ ∞

rr

dκ(φ) +
d

dt

∫ ∞

rr

dκ(ro) (376)

With the last term of eq. 376 we have anticipated the results of sec.7.5.4 that show

that the radius ro of a BSP is a function its energy that can vary with time.

ro =
ℏ c
E

(377)

with

E =
√
E2
o + E2

p for BSP with v ̸= c (378)

and

E = ℏω for BSP with v = c (379)

The variations in the directions rr and φ are defined by the unit vectors s̄r and s̄φ.

For sign conventions see Fig. 53.

The vectors s̄r = − s̄, s̄φ and s̄δ = n̄ are orthogonal unit vectors.

It is important to note that for the time differentiation of the transversal field, the

vector
∫∞
rr

¯dHn is normal to the surface formed by v and rr, and doesn’t change its

direction with the variations of rr and φ because of dy = − v dt. This means, that the

variations in time of
∫∞
rr
dκ in the direction s̄γ add algebraic.

d

dt

∫ ∞

rr

¯dHn =
d

dt
[Hn]

∫ ∞

rr

dκ s̄γ +Hn
d

dt

∫ ∞

rr

dκ s̄γ (380)

The concept is shown in Fig. 53.
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Figure 53: Geometric relations to calculate the time variation of κ

7.1.1 Deduction of d
dt

∫∞
rr
dκ at a point P for a BSP that moves with the

speed v.

It is

dκ =
1

2

ro
r2r
drr sinφ dφ and

∫ ∞

rr

dκ =
1

2

ro
rr

sinφ dφ (381)

The time differentiation presents three terms depending if the differentiation is

made towards rr or φ or ro.

d

dt

∫ ∞

rr

dκ(rr) =
δ

δrr

∫ ∞

rr

dκ(rr)
drr
dt

(382)

d

dt

∫ ∞

rr

dκ(φ) =
δ

δφ

∫ ∞

rr

dκ(φ)
dφ

dt
(383)

and

d

dt

∫ ∞

rr

dκ(ro) =
δ

δro

∫ ∞

rr

dκ(ro)
dro
dt

(384)

With the instant speed v(t) of a BSP on the y coordinate and without signal time

delay considerations, we have
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δ

δrr

∫ ∞

rr

dκ(rr) = − 1

2

ro
r2r

sinφ dφ
drr
dt

≈ v(t) cosφ (385)

δ

δφ

∫ ∞

rr

dκ(φ) =
1

2

ro
rr

cosφ dφ
dφ

dt
≈ − v(t)

rr
sinφ (386)

and

δ

δro

∫ ∞

rr

dκ(ro) =
1

2

1

rr
sinφ dφ

dro
dt

=
dro
dt

(387)

We get for the time differentiation of
∫∞
rr
dκ in the direction of rr

d

dt

∫ ∞

rr

dκ(rr) = − 1

2
v(t)

ro
r2r

sinφ cosφ dφ (388)

and in the direction of φ

d

dt

∫ ∞

rr

dκ(φ) = − 1

2
v(t)

ro
r2r

sinφ cosφ dφ (389)

and in the direction of ro

d

dt

∫ ∞

rr

dκ(ro) =
1

2

1

rr
sinφ dφ

dro
dt

(390)

7.1.2 Deduction of the time differentiations at a point P of the longitudinal

and transversal fields for a BSP that moves with v.

The time differentiation for the longitudinal field was

d

dt

∫ ∞

rr

¯dHs = − d

dt
[Hs]

∫ ∞

rr

dκ s̄r − Hs
d

dt

∫ ∞

rr

dκ s̄r + Hs

∫ ∞

rr

dκ
dφ

dt
s̄φ (391)

and for the time differentiation of the longitudinal field we get

d

dt

∫ ∞

rr

¯dHs = − 1

2

d

dt
[Hs]

ro
rr

sinφ dφ s̄r + Hs v(t)
ro
r2r

sinφ cosφ dφ s̄r (392)

− 1

2
Hs

1

rr
sinφ dφ

dro
dt

s̄r − 1

2
Hs v(t)

ro
r2r

sin2 φ dφ s̄φ

The time differentiation for the transversal field was
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d

dt

∫ ∞

rr

¯dHn =
d

dt
[Hn]

∫ ∞

rr

dκ s̄γ +Hn
d

dt

∫ ∞

rr

dκ s̄γ (393)

and for the time differentiation of the transversal field we get

d

dt

∫ ∞

rr

¯dHn =
1

2

d

dt
[Hn]

ro
rr

sinφ dφ s̄γ − Hn v
ro
r2r

sinφ cosφ dφ s̄γ (394)

+
1

2
Hn

1

rr
sinφ dφ

dro
dt

s̄γ

We now analyze three cases: First for speeds v ≪ c, second for speeds where

∆v = c− v ≪ c and third for v = c.

a) case with v ≪ c.
For v ≪ c we get for Hs

Hs = c
√
m and

d

dt
[Hs] = 0 (395)

and for Hn

Hn = v
√
m and

d

dt
[Hn] =

dv

dt

√
m (396)

and for ro

ro =
ℏ c
Eo

and
dro
dt

= 0 (397)

b) case with ∆v ≪ c.
We have that

E 2
p ≫ E 2

o with Ep = m c
v√

1− v2

c2

(398)

and

d

dt
[Ep] = m c

{ [
1− v2

c2

]− 1
2

+
v2

c2

[
1− v2

c2

]− 3
2

}
dv

dt
(399)

For the longitudinal field Hs we get

Hs ≈
Eo√
Ep

and
d

dt
[Hs] ≈ − 1

2
Eo E

− 3
2

p
d

dt
[Ep] (400)

and for the transversal field Hn we get
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Hn ≈
√
Ep and

d

dt
[Hn] =

1

2
E

− 1
2

p
d

dt
[Ep] (401)

and for ro we get

ro =
ℏ c
Ep

and
dro
dt

= − ℏ c
E2
p

d

dt
[Ep] (402)

c) case with v = c.
If simultaneously v → c and the rest mass m→ 0 we define that

lim
m→0
v→c

m√
1− v2

c2

= mc (403)

where mc is the mass of the BSP with light speed. We also define that

mc =
Ec
c2

with Ec = ℏ ω (404)

With v → c and m→ 0 we also have

Eo → 0 Hs = 0 Hn =
√
Ec =

√
mc c (405)

For v = c we have

dv

dt
= 0

d

dt
[Hn] =

c

2
√
mc

d

dt
[mc] (406)

ro = roc =
ℏ c
Ec

d

dt
[roc ] = − ℏ

m2
c c

d

dt
[mc] (407)

7.2 Induced force on a static BSP placed in a field ¯dH that

changes with time.

We form the closed path integral according eq.(222) from sec. 4.6∮
dl̄

2πR
· d

dt

∫ ∞

rr

¯dHn (408)

The concept is shown in Fig. 54.
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Figure 54: Geometric relations to calculate the closed path integral of d
′
Hn

Even though the tangential values d
dt

∫∞
rr

¯dHn of the fundamental particles are not

distributed in opposed pairs symmetric to the probe BSP, so that the rotational mo-

mentums J̄n form regular opposed pairs, they can be replaced by an equivalent config-

uration of rotational momentums of equal dimension resulting in the same closed path

integral.

This equivalent configuration of opposed rotational momentums generate linear

momentum dp on the probe BSP placed in the variable field.

The linear momentum generates a force dFin given by

dFin =
1

c

∮
dl̄

2πR
· d

dt

∫ ∞

rr

¯dHn

∫ ∞

rp

dHsp (409)

with dHsp from the static BSP.

To obtain the total force Fin on the static BSP we have to integrate over the whole

space around the static BSP.

Note: The field dHn generated by the moving BSP is the same for negative and

positive moving BSPs. The induced force on the probe BSP results from pairs of op-

posed dHn that pass from the moving to the probe BSP. The induced force is therefore

independent of the signs of the interacting BSP’s.
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7.2.1 Force induced on a static BSP by the transversal field dHn of a BSP

that moves with v.

To calculate the momentum or the force on the probe BSP, all closed path integrals in

the space around the probe or test BSP must be added, what is mathematically nearly

impossible. To work with a more practicable instrument we take as a representant of

the integral over the whole space a well defined closed path integral, divide it by its

area and take the limit when the area tends to zero. The substitution of the whole

space integral by the rotor at the point of the test BSP implies the existence of a

proportionality between these variables.

We start with the equation for the force dFin generated by a no specifically defined

closed path integral contained in a plane orthogonal to the plane formed by v̄ and rr.

dFin =
1

c

∮
dl̄

2πR
· d
dt

∫ ∞

rr

¯dHn

∫ ∞

rp

dHsp [N ] (410)

and define a special closed path integral that is positioned relatively to the test

BSP so that rp = R and φp → π
2
.

We get for∫ ∞

R

dHsp =
1

2
Hsp

rop
R

sinφp dφp
dγp
2π

≈ 1

2

√
mp c

roP
R

dφp
dγp
2π

(411)

We put the obtained expression in the equation for dFin and change terms resulting

dFin =
1

4

√
mp rop dφp

dγp
2π

∮
dl̄

πR2
· d
dt

∫ ∞

rr

¯dHn (412)

Now we take the limit for R → 0 and obtain

d̄F in =
1

4

√
mp rop dφp

dγp
2π

rot
d

dt

∫ ∞

rr

¯dHn (413)

or

d̄F in = Kip rot
d

dt

∫ ∞

rr

¯dHn [N ] (414)

with

Kip =
1

4

√
mp rop dφp

dγp
2π

(415)

Now we introduce a transformation to overcome the undefined variables dφ and dγ

and define

d
′
κ =

dκ

∆φ ∆γ
=

1

4π

ro
r2rr

drr sinφ (416)
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and get as general expressions

d
′
Hn = Hn d

′
κ =

1

4π
Hn

ro
r2rr

drr sinφ (417)

and

d
′
Hs = Hs d

′
κ =

1

4π
Hs

ro
r2rr

drr sinφ (418)

We get as general expression for the force

d
′
Fin =

1

c

∮
dl̄

2πR
· d
dt

∫ ∞

rr

d
′
H̄n

∫ ∞

rp

d
′
Hsp [N ] (419)

with

d
′
F̄in =

d̄F in

∆φ ∆γ ∆φp ∆γp
(420)

and for the specially defined closed path integral

d
′
F̄in =

1

8 π

√
mp rop rot

d

dt

∫ ∞

rr

d
′
H̄n (421)

with

d
′
H̄n =

1

4π
Hn

ro
r2rr

drr sinφ n̄ (422)

7.2.2 Force induced on a static BSP by the longitudinal field dHs of a BSP

that moves with v .

We start with the equation for the force dFis generated by a no specifically defined

closed path integral contained in the plane formed by v̄ and rr.

dFis =
1

c

∮
dl̄

2πR
· d

dt

∫ ∞

rr

¯dHs

∫ ∞

rp

dHsp [N ] (423)

with ∫ ∞

rp

dHsp =
1

2
Hsp

rop
rp

sinφp dφp
dγp
2π

(424)

and

Hs =
√
Es Es =

E 2
o√

E 2
o + E 2

p

Hsp = c
√
mp (425)
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If we put these expressions in the first equation and change terms we get with

R = rp sinφp

dFis =
1

4
c
√
mp rop sin2 φp dφp

dγp
2π

1

c

∮
dl̄

πR2
· d
dt

∫ ∞

rr

¯dHs (426)

If we chose the closed path integral so that φp =
π
2
we get

dF̄is =
1

8π

√
mp rop dφp dγp rot

d

dt

∫ ∞

rr

¯dHs (427)

We define that

d
′
Fis =

dFis
∆φ ∆γ ∆φp ∆γp

(428)

and get

d
′
F̄is =

1

8 π

√
mp rop rot

d

dt

∫ ∞

rr

d
′
H̄s (429)

with

d
′
H̄s =

1

4π
Hs

ro
r 2
r

drr sinφ s̄ (430)

Note: If we compare eq.(421) and eq.(429) with the corresponding equations from

standard theoretical physics

B̄ = rotĀ Ē = − ∂

∂t
Ā F̄ = qĒ = −q ∂

∂t
Ā (431)

with

Ā =
µo
4π

∫
J̄(r̄

′
)

|r̄ − r̄′|
dV

′
(432)

we conclude that the vector potential field Ā is related to the field d
′
H̄ through

Ā = − 1

8 π q

√
mp rop

∫
V

rot

∫ ∞

rr

d
′
H̄ (433)

7.3 Induced linear momentum balance between static and

moving BSPs.

For practical purpose we introduced in sec. 7.2.1 the rotor as representative of the

space integral assuming proportionality between them. In what follows we differentiate

between aligned and not aligned particles.
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7.3.1 Induced linear momentum balance between not aligned static and

moving BSPs.

The forces induced on the static probe BSP are defined by the equations (429) and

(421).

d
′
F̄is =

1

8 π

√
mp rop rot

d

dt

∫ ∞

rr

d
′
H̄s (434)

and

d
′
F̄in =

1

8 π

√
mp rop rot

d

dt

∫ ∞

rr

d
′
H̄n (435)

where

d
′
H̄s = Hs d

′
κ s̄ and d

′
H̄n = Hn d

′
κ n̄ (436)

with

Hs = Hs(v) Hn = Hn(v) v = v(t) (437)

The function d
′
κ has a rotational symmetry around the velocity vector v̄ , and

complies with

d
′
κ(rr, φ) = d

′
κ(rr, π − φ) for arbitrary γ (438)

where

d
′
κ =

1

4π

ro
r2r
drr sinφ with rr = rr(t) φ = φ(t) (439)

The rotor can be interchanged with the time differentiation resulting

d
′
F̄is =

d
′
p̄is
dt

=
1

8 π

√
mp rop

d

dt
rot

∫ ∞

rr

d
′
Hs s̄ (440)

and

d
′
F̄in =

d
′
p̄in
dt

=
1

8 π

√
mp rop

d

dt
rot

∫ ∞

rr

d
′
Hn n̄ (441)

The corresponding linear momentums are shown on Fig. 55.

117



'P

P

sHd
r

'

nHd
r

'

sHd
r

'

nHd
r

'

si
pd '

si
pd '-

ni
pd '

ni
pd '-

Figure 55: Linear momentum balance between not aligned static and moving BSPs

We get for a constant velocity v

d
′
p̄is = 0 s̄r + 0 s̄θ +

1

32π2

√
mp rop

ro
r2r
Hs cos θ s̄γ (442)

and

d
′
p̄in = − 1

16π2

√
mp rop

ro
r2r
Hn cos θ s̄r + 0 s̄θ + 0 s̄γ (443)

with

s̄ = − s̄r n̄ = s̄γ (444)

φ = π − θ sinφ = sin θ cosφ = − cos θ dφ = − dθ (445)

and
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drr
dt

= − v cos θ
dθ

dt
=

v

rr
sin θ (446)

Because of the symmetry of the function d
′
κ the potential linear momentums d

′
p̄i

at the symmetric points P and P
′
are opposed as shown on Fig. 55. That means, that

if a probe BSP at the point P absorbs the angular momentums of the regenerating

fundamental particles that produce the linear momentum d
′
p̄i at the moving BSP, the

corresponding angular momentums at point P
′
are not more compensated when they

arrive at the nucleus of the moving BSP producing there the opposed linear momentum

−d ′
p̄i.

Note: The direction of the induced force is independent of the sign of the lon-

gitudinal angular momentum of the regenerating fundamental particles of the probe

particle.

7.3.2 Induced linear momentum balance between aligned static and mov-

ing BSPs.

We describe now the mechanism how the linear momentum is exchanged between

aligned moving and static BSPs.

The concept is shown in Fig. 56.

We start with the moving BSP 1
′
with the speed v1 and momentum p1, which is

regenerated as BSP 1 through its longitudinal dHs1 and transversal dHn1 rotational

momentums. When BSP 1 aproximates to the static BSP 2, the regenerating rotational

momentums dHs2 from BSP 2 will take over the rotational momentums dHn1 from BSP

1. When BSP 1 looses its transversal rotational momentums it stops to v = 0, and BSP

2 now moves with the speed v2 and the momentum p2 that is equal to the momentum

that BSP 1 had before stopping (conservation law).
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Figure 56: Linear momentum balance between aligned static and moving BSPs

7.4 Resume of origin of linear momentum.

The energy of a particle is stored in the longitudinal and transversal angular momenta

of its regenerating fundamental particles.

Linear momenta are generated by opposed transversal angular momenta that com-

ply with the requirements for generation of linear momenta (sec. 2.10).

Opposed transversal angular momenta that comply with the requirements for gen-

eration of linear momenta are generated by

• a moving particle

• the crossing of longitudinal angular momenta of two particles

• the crossing of transversal angular momenta of two moving particles

Opposed transversal angular momenta of a moving particle, that comply with the

requirements for generation of linear momenta, can be absorbed by the regenerating

longitudinal angular momenta of an other particle, generating on it the corresponding

linear momenta (Induced linear momentum).
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The following Fig. 57 shows a schematic representation of the generation of the

induced force by a moving BSP on a static BSP.

Figure 57: Generation of the induced forces.
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7.5 The induced far force field of an oscillating BSP.

We start with eq. (421)

d
′
F̄in =

1

8π

√
mp rop rot

d

dt

∫ ∞

rr

d
′
H̄n (447)

The equation (394) of the transversal field of a BSP that moves with v ≪ c is with

d
′
H̄n = (2π)−1 dH̄n and dro/dt = 0 and s̄γ = n̄

d

dt

∫ ∞

rr

d
′
H̄n = +

1

4π

√
m
dv

dt

ro
rr

sinφ n̄− 1

2π

√
m v2

ro
r2r

sinφ cosφ n̄ (448)

We now calculate the far field of an oscillating BSP in neglecting the secong term

that is invers proportional to r2r .

Note: The longitudinal field eq. (392) can also be neglected for the far field because

it is also inverse proportional to r2r .

We introduce now a change of coordinates.

θ = π − φ sinφ = sin θ cosφ = − cos θ dφ = − dθ (449)

The concept is shown in Fig. 58.

Figure 58: Coordinate transformation for the calculation of the rotor
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d

dt

∫ ∞

rr

d
′
H̄n = C̄n = Cr ēr + Cγ ēγ + Cθ ēθ (450)

To consider the time delay we define an oscillation with a time delay

tr =
rr
c
as a function of rr.

y = − ym sin
[
ω
(
t− rr

c

)]
and with vm = ym ω (451)

v = −vm cos
[
ω
(
t− rr

c

)] dv

dt
= vm ω sin

[
ω
(
t− rr

c

)]
(452)

and

dv

drr
= − vm

ω

c
sin

[
ω
(
t− rr

c

)]
(453)

So we have that

Cr = 0 Cγ =
1

4π

√
m vm ω

ro
rr

sin θ sin η Cθ = 0 (454)

with

η =
[
ω
(
t− rr

c

)]
(455)

The components of rot C̄n are given by

(rot C̄n)rr =
1

2π

√
m vm ω

ro
r2r

cos θ sin η (rot C̄n)γ = 0 (456)

(rot C̄n)θ =
1

4π

√
m vm

ω2

c

ro
rr

sin θ cos η (457)

For the far field we neglect all terms that have an inverse proportionality greater

than rr. We get

(rot C̄n)rr ≈ 0 (rot C̄n)γ = 0 (458)

(rot C̄n)θ =
1

4π

√
m vm

ω2

c

ro
rr

sin θ cos η (459)

The far force field of the oscillating BSP in relation to the mass is

d
′
F̄i√

mp

√
m

=
1

32π2
rop ro

vm
rr

ω2

c
sin θ cos η ēθ

[
N

kg

]
(460)

with rop the radius of the static test BSP and ro the radius of the particle that
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moves with v.

The far force field is proportional to ω2 and inverse proportional to rr and coincides

with the form of the far oscillating force of an electric dipole that is equal to

Ē =
F̄e
Q

=
1

4 π ϵo

po
rr

ω2

c2
sin θ cos η ēθ

[
N

C

]
(461)

with po = ym Q the electric dipole moment.

7.5.1 Induced power on a static BSP that is in the far field of an oscillating

BSP.

The energy of the far field is stored in the transversal rotational momentum Jn of the

regenerating fundamental particles of the oscillating BSP.

If we introduce a static test BSP in the oscillating far field, a force d
′
Fi = mp

dvp
dt

will actuate on the particle and give a kinetic energy ∆E = 1
2
mp ∆2vp in the time

∆t = Kr2o. The imparted kinetic energy is absorbed by an external force and reduced

to zero.

So we have that

∆E =
1

2

∆2p

mp

∆E =
1

2

(∆t d
′
Fi)

2

mp

∆E =
1

2

K2 r4o
mp

d
′
F 2
i (462)

The above energy is produced in the time ∆t what gives a power of

P =
∆E

∆t
=

1

2

∆t

mp

d
′
F 2
i P =

1

2

K r2o
mp

d
′
F 2
i (463)

If we consider that the test BSP oscillates with the same frequency as the main

BSP and therefore both have the same radius ro and mass m, we get for the power

density

S =
1

2

[
1

32π2

]2
K m r6o
c2

v 2
m ω 4

r 2
r

sin2 θ cos2
[
ω
(
t− rr

c

)] [
W

kg

]
(464)

The power density is proportional to ω4 and inverse proportional to r2r and coincides

with the equation of an electric oscillating dipole.

We note that the energy emitted by a BSP through their emitted fundamental

particles, returns with the regenerating fundamental particles, except it is absorbed by

the regenerating fundamental particles of an other BSP.
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7.5.2 Quantification of the irradiated energy of an oscillating BSP.

The energy irradiated by an oscillating BSP is given by the change of velocity with

the time, thus by terms with dv
dt
. For v ≪ c we must consider only the time variation

of d
′
En because the time variation of d

′
Es has no terms with dv

dt
.

In general we have for a particle moving with speed v

d
′
En = En d

′
κ

∫ ∞

rr

d
′
En = En

∫ ∞

rr

d
′
κ d

′
κ =

dκ

dφ dγ
(465)

d

dt

∫ ∞

rr

d
′
En =

d

dt
[En]

∫ ∞

rr

d
′
κ + En

d

dt

∫ ∞

rr

d
′
κ(rr) + En

d

dt

∫ ∞

rr

d
′
κ(φ) (466)

With the equations from sec. 7.1.1 and with v ≪ c we get

En = m v2
d

dt
[En] = 2 m v

dv

dt
(467)

d

dt

∫ ∞

rr

d
′
En = − 1

2π
m v3

ro
r2r

sinφ cosφ +
1

2π
m v

dv

dt

ro
rr

sinφ (468)

For an oscillating BSP with

y = −ym sin η v = −vm cos η
dv

dt
= vm ω sin η vm = ym ω (469)

we get for the time differentiation of the irradiated energy, that is defined by the

second term with dv
dt

d

dt

∫ ∞

rr

d
′
Enirr

= − 1

2π
m y2m ω3 ro∼

rr
sinφ sin η cos η (470)

Note: We define now the following nomenclature:

• ro∼ for the radius of the oscillating BSP

• rop for the static test or probe BSP

• ro for a BSP that moves with speed v

• roc for a BSP that moves with light speed.

We are interested in the irradiated energy during a certain time period and in the

space defined by the space angle dφ sinφ dγ. The mentioned amount of irradiated
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energy is the same for all distances rr so that we can chose a convenient rr = ro∼ and

integrate over time. For ω ro∼
c

≪ π
100

it is η ≈ ωt and we get

d
′
Enab

=
1

ω

∫ ωt

0

[
d

dt

∫ ∞

ro∼

d
′
Enirr

]
dωt = − 1

4π
m y2m ω2 sinφ sin2 ωt (471)

where

d
′
Enab

=

∫ ∞

ro∼

d
′
Enirr

(472)

The mean irradiated energy during a period from ωt = 0 to ωt = π is

d
′
Ēnab

=
1

8π
m y2m ω2 sinφ (473)

We consider that dEnab
= d

′
Enab

dφ dγ

d Ēnab
=

1

8π
m y2m ω2 sinφ dφ dγ (474)

and calculate the irradiated energy from φ = 0 to φ = π
2∫ π

2

φ=0

d Ēnab
=

1

8π
m y2m ω2 dγ = d Ēnc (475)

The deduced energy d Ēnc is the energy of an irradiated BSP that moves with light

speed c as shown in Fig. 22.

We define an equivalent angular momentum ℏn so that d Ēnc = ℏn ω.

d Ēnc =
1

8π
(mγ y

2
m ω) ω = ℏn ω (476)

with

ℏn =
1

8π
mγ y

2
m ω and mγ = m dγ (477)

The irradiated energy was quantified for a half period of ωt. For n half periods we

have

d Ēnc = n
1

8π
(mγ y

2
m ω) ω = n ℏn ω (478)

7.5.3 Quantification of the transversal component of the irradiated energy

of an oscillating BSP.

We start with the induced force on a probe particle by an oscillating BSP given by eq.

(421)
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d
′
F̄in =

1

8π

√
mp rop rot C̄n (479)

with

C̄n =
d

dt

∫ ∞

rr

d
′
H̄n (480)

As we are interested in the irradiated part we consider only terms with dv
dt
.

The longitudinal component is given by the rotor of C̄n in the direction of rr with

eq. (456) already deduced.

(rot C̄n)rr =
1

2π

√
m vm ω

ro∼
r2r

cos θ sin η (481)

and the transversal component by the rotor in the direction of θ with eq. (457)

already deduced.

(rot C̄n)θ =
1

4π

√
m vm

ω2

c

ro∼
rr

sin θ cos η (482)

We get for the induced force in the direction rr

d
′
Fr =

1

16π2

√
m

√
mp vm ω

ro∼ rop
r2r

cos θ sinωt (483)

and in the direction of θ

d
′
Fθ =

1

32π2

√
m

√
mp vm

ω2

c

ro∼ rop
rr

sin θ cosωt (484)

The longitudinal and transversal forces are displaced in time and in space by an

angle of π
2
degrees. The concept is shown in Fig. 59.

For the far field we neglect the induced force in the direction rr and concentrate on

d
′
Fθ.

We assume now that the oscillating BSP and the probe BSP are electrons and that

for vm ≪ c the radius ro∼ ≈ rop . As we are interested in the average irradiated energy

during a half time period in the space defined by the space angle dφ sinφ dγ, we chose

again conveniently rr = ro∼ and with η = ωt we get for the induced force between the

oscillating BSP and the probe BSP

d
′
Fθ =

1

32π2

√
m

√
mp vm

ω2

c
rop sin θ cosωt with vm = ym ω (485)

We calculate the average value from ωt = −π
2
to ωt = +π

2
, make mp = m

and get with vm = ym ω
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Figure 59: Longitudinal and transversal potential momentums of irradiated energy

d
′
F̄θ =

1

16π 3
m ym

ω3

c
rop sin θ (486)

The force d
′
F̄θ is transmitted from the irradiated BSP with light speed to the probe

BSP in the time ∆t.

The irradiated transversal linear momentum defined by the space angle

dθ sin θ dγ is, considering that d p̄θ = d
′
p̄θ dθ dγ

d p̄θ =
1

16π 3
∆t m ym

ω3

c
rop sin θ dθ dγ (487)

We now integrate over θ from θ = 0 to θ = π
2∫ π

2

θ=0

d p̄θ =
1

16π 3
∆t m ym

ω3

c
rop dγ (488)

The transversal linear momentum, defining mγ = m dγ is

d p̄θc =
1

16π 3
∆t mγ ym

ω3

c
rop (489)

and the energy of the transversal linear momentum is

d Ēθc =
1

16π 3
∆t rop mγ ym ω3 (490)
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The irradiated energy was quantified for a half period of ωt. For n half periods we

have

d Ēθc = n
1

16π 3
∆t rop mγ ym ω3 = n ℏθc ω (491)

7.5.4 Analysis of the quantified components of the irradiated energy of an

oscillating BSP.

For the far field the irradiated energy d Ēnc must be equal to the transversal irradiated

energy d Ēθc .

If we now take into consideration that the energy ℏω is the minimum irradiated

energy of a BSP that oscillates with the frequency ω we have that

d Ēnc =
1

8π
(mγ y

2
m ω) ω = ℏ ω = mc c

2 (492)

and with mγ = mc we have

ym =
√
8π

c

ω
(493)

Also we have that

1

8π
mγ y

2
m ω2 =

1

16π 3
∆t rop mγ ym ω3 (494)

From the last two expressions and with ∆t = K ro1 ro2 we get

rop ro1 ro2 =
2 π2

√
8π c

K ω2
=

2 π2
√
8π c

K c2
ℏc
ℏω

ℏc
ℏω

K = 5.42713 · 104 s/m2 (495)

and with

2π2
√
8π m c

K
= 4.9828 · 10−25 [Jm] and ℏ c = 3.16152929 · 10−26 [Jm] (496)

we can write that

2π2
√
8π m c

K
= 15.76056 · ℏ c (497)

We get that

rop ro1 ro2 = 15.76056
ℏc
m c2

ℏc
ℏω

ℏc
ℏω

= 15.76056
ℏc
Eo

ℏc
Ec

ℏc
Ec

(498)
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We conclude that

rop = 2.507
ℏc
Eo

ro1 = 2.507
ℏc
Ec

ro2 = 2.507
ℏc
Ec

(499)

We have deduced the forgoing equations under the assumption that v ≪ c what

means that Eo ≫ Ep.

Note: The irradiated energies d Ēnc and d Ēθc were deduced on different differential

bases what explains that the factor 2.507 ̸= 1. The first differential energy d Ēnc was

deduced based on dκ while the second d Ēθc on the rotor of dκ.

We now define that in general the radius of a BSP is given by

ro =
ℏ c
E

(500)

where for the energy E we have

E =
√
E2
o + E2

p for BSP with v ̸= c (501)

and

E = ℏω for BSP with v = c (502)

7.5.5 Distance between one pair of BSPs with v = c and its relation with

the stored energy.

The energy of one pair of BSPs with v = c is

E = ℏω = h ν for BSP with v = c (503)

The energy of one BSP we designate with E(BSP ) and have that E = 2 E(BSP ).

Also we define the distance between the two BSPs as d = c τ , where τ is the time to

move from one BSP of the pair to the other with light speed.

Because of

roc =
ℏ c
Ec

=
ℏ c
ℏ ω

=
λ

2π
(504)

we have

d = c τ = π roc = λ/2 (505)

We now write
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E = h ν = 2 E(BSP ) τ ν with h = 2 E(BSP ) τ = constant (506)

or

h = 2 E(BSP )
d

c
= constant with d =

λ

2
(507)

resulting that

h c = 2 E(BSP ) d = 2 E(BSP ) π roc = E(BSP ) λ = constant (508)

We see that if we concentrate the energy of a photon on one pair of BSPs at the

distance d = λ/2, the product of the energy of the BSP and the distance is a constant.

It is like a spring with a force f ∝ 1/d2, where the product of the stored energy with

the distance is also a constant. We also see, that for BSPs with light speed, the radius

ro decreases with the energy.

From

ro =
ℏ c
E

E = ℏ ω c = ν λ (509)

we conclude that

ro =
λ

2π
(510)

7.6 The Maxwell equations.

7.6.1 The 1. Maxwell equation for the far induced force field.

We start with eq. (460) of the far induced force field of an oscillating BSP withm = mp

and ro = rop

d
′
F̄i =

1

32π 2
m r2o

vm
rr

ω2

c
sin θ cos

[
ω
(
t− rr

c

)]
ēθ [N ] (511)

To arrive to an expression that is equivalent to the 1.Maxwell equation

d

dt
[Ē] =

1

ϵ
rotH̄ (512)

we calculate the time differentiation of d
′
F̄i, take three times the rotor of the

cumulated value of d
′
Hn and show that the results obtained are proportional.
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d

dt
[d

′
F̄i] = − 1

32π 2
m r2o

vm
rr

ω3

c
sin θ sin

[
ω
(
t− rr

c

)]
ēθ

[
N

s

]
(513)

The cumulated value from d
′
H̄n for v ≪ c is∫ ∞

rr

d
′
H̄n =

1

4π

√
m v

ro
rr

sin θ n̄ (514)

and with

v = −vm cos
[
ω
(
t− rr

c

)]
η =

[
ω
(
t− rr

c

)]
(515)

we get after the three rotors, neglecting for the far field all terms with an inverse

proportionality greater than rr, the components

(rot rot rot

∫ ∞

rr

d
′
H̄n)rr = 0 (rot rot rot

∫ ∞

rr

d
′
H̄n)γ = 0 (516)

(rot rot rot

∫ ∞

rr

d
′
H̄n)θ =

1

4π

vm
rr

ω3

c3
ro

√
m sin θ sin η ēθ (517)

If we now compare the time differentiation from d
′
F̄i with the θ-component of the

three rotors we see that they are proportional and that we can write

d

dt
[d

′
F̄i] = − 1

8π
c2 ro

√
m rot

[
rot rot

∫ ∞

rr

d
′
H̄n

]
(518)

This is the flow-law for regions free of BSPs.

Defining the flow density as

Θ̄ = − rot rot

∫ ∞

rr

d
′
H̄n (519)

we get

d

dt
[d

′
F̄i] =

1

8π
c2 ro

√
m rot Θ̄ (520)

This equation has the form of the 1.Maxwell equation

d

dt
[Ē] =

1

ϵ
rotH̄ (521)

Written in integral form we get
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∫
A

d

dt
[d

′
F̄i] · dĀ = − 1

8π
c2 ro

√
m

∮ [
rot rot

∫ ∞

rr

d
′
H̄n

]
· dl̄ (522)

7.6.2 The 2. Maxwell equation.

To get the induction in a closed circuit we must build the rotor of d
′
F̄in from eq.(421)

rot d
′
F̄in =

1

8π

√
m ro rot rot

d

dt

∫ ∞

rr

d
′
H̄n (523)

The time differentiation we can exchange with the rotors and we get

rot d
′
F̄in =

1

8π

√
m ro

d

dt

[
rot rot

∫ ∞

rr

d
′
H̄n

]
(524)

Introducing the previously defined flow density

Θ̄ = − rot rot

∫ ∞

rr

d
′
H̄n (525)

we obtain the 2. Maxwell equation

rot d
′
F̄in = − 1

8π

√
m ro

dΘ̄

dt
(526)

This equation has the form of the 2.Maxwell equation

rotĒ = −µ d

dt

[
H̄

]
(527)

In the two Maxwell equations we recognize the equivalence between

Ē ≡ d
′
F̄in and H̄ ≡ Θ̄ (528)

If we define a vector potential ĀΘ as follows,

Θ̄ = rotĀΘ with divΘ̄ = 0 (529)

we get the wave equation

∆ĀΘ − 1

c2
d2

dt2
ĀΘ = 0 with ĀΘ = −rot

∫ ∞

rr

d
′
H̄n (530)

7.6.3 Equivalence between traditional fields based on Coulomb charge and

fields based on mass charge.

From the 1. Maxwell equation (520) we have:
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d

dt
[d

′
F̄i] =

1

8π
c2 ro

√
m rot Θ̄ with Θ̄ = − rot rot

∫ ∞

rr

d
′
H̄n (531)

The present work defines the charge as the difference between the mass of the

constituent BSPs of opposed signs of a particle (Qm =mass -charge).

Qm = N m [kg] Q = N q [C] Qm =
m

q
Q (532)

with q and m respectively the charge in Coulomb and the mass in kilogram of an

electron. N represents the difference between the constituent number of electrons and

positrons of a particle.

The electric field is then defined as the force per mass-charge as

Ēm =
d

′
F̄i

Qm

[N/kg] Em =
q

m
E (533)

with E representing the electric field in Newton per Coulomb. We get

dĒ

dt
=
m

q

d

dt
Ēm =

1

8π

c2 ro
Q

√
m rot Θ̄ (534)

With

dĒ

dt
=

1

ϵo
rot H̄ and H̄m = Θ̄ = − rot rot

∫ ∞

rr

d
′
H̄n (535)

we conclude that

H̄ =
ϵo
8π

c2 ro
Q

√
m H̄m and Ē =

m

q
Ēm (536)

and define that

Bm = µo Hm and Dm = ϵo Em (537)

7.7 Divergence.

7.7.1 Divergence of the transversal field dHn.

The components of the transversal field from a not polarized BSP are∫ ∞

rr

¯dHn = Cr ēr + Cγ ēγ + Cθ ēθ (538)

with
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Crr = 0 Cγ =

∣∣∣∣∫ ∞

rr

¯dHn

∣∣∣∣ Cθ = 0 (539)

If we use the already defined coordinate transformations we get

div

∫ ∞

rr

¯dHn = 0 (540)

which is equivalent to the Maxwell law

divH̄ = 0 (541)

Note: The defined forms of polarizations for BSPs with light speed allow that

div
∫∞
rr

¯dHn ̸= 0. The source of the field dHn is then a surface.

7.7.2 Divergence of the force field d̄F .

The total force on a probe BSP results from the static (Coulomb) and the dynamic

forces.

F̄ = F̄s + F̄i or

∫
σ

d̄F =

∫
σ

d̄F s +

∫
σ

d̄F i (542)

Now we analyze the two components of the total force.

• In sec.4.2 eq.(201) we have seen that the static force F2 on a probe BSP(2)

produced by a BSP(1) is radial to BSP(1). The divergence outside the radius

of the BSP(1) is therefore zero. The divergence at the point of the BSP(1) is

proportional to the mass density ρm of the BSP(1). In sec. 4.7 we have calculated

the divergence of F2 = Fs with △n1 = △n2 = 1 and K = 5.42713 · 104 we got

∇̄ · F̄s = 3.1826 · 103 ρm (543)

For a complex particle formed by more than two BSPs we have

∇̄ · F̄s = 3.1826 · 103 ∆n ρm (544)

with ∆n the difference between positive and negative BSPs.

• We have defined that the total induced force on a probe BSP, produced by the

field of a moving BSP, is proportional to a special closed path integral when

the area enclosed tends to zero. That definition has lead us to the following

expression.
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¯dFi = Ki rot
d

dt

∫ ∞

rr

¯dHn (545)

with Ki a proportional constant.

As the divergence of a rotor is always zero we have

div ¯dFi = Ki div

{
rot

d

dt

∫ ∞

rr

¯dHn

}
= 0 (546)

7.8 Lorentz transformation.

The present theory is based on fundamental particles with longitudinal and transverasl

rotational momentums. Based on this new approach we have deduced the four Maxwell

equations.

• 1. Maxwell equation for the induced force field d
′
F̄i

d

dt
[d

′
F̄i] =

1

8π
c2 ro

√
m rot Θ with Θ = − rot rot

∫ ∞

rr

d
′
H̄n (547)

• 2. Maxwell equation for the induced force field d
′
F̄i.

rot d
′
F̄i = − 1

8π

√
m ro

d Θ̄

dt
with Θ̄ = − rot rot

∫ ∞

rr

d
′
H̄n (548)

• Divergence of the static force field of a complex particle

∇̄ · F̄s = 3.1826 · 103 ∆n ρm (549)

and the divergence of the induced force field of an BSP

div d
′
F̄i = div

(
1

8π

√
m ro rot

d

dt

∫ ∞

rr

d
′
H̄n

)
= 0 (550)

• Divergence of the cummulated transversal rotational momentum field of a BSP

div

∫ ∞

rr

d
′
H̄n = 0 (551)
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The four Maxwell equations deduced with the present approach have the same form

as the four Maxwell equations of the standard theory, and are therefore also invariant

to the Lorentz transformation.

7.9 Basic field equations.

The fields of the present theory are:

d
′
H̄s = −Hs d

′
κ ēr and d

′
H̄n = Hn d

′
κ ēγ (552)

with

d
′
H 2 = d

′
H 2
s + d

′
H 2
n = [ d

′
Es + d

′
En ] d

′
κ (553)

where d
′
κ in the coordinates of Fig. 58 is

d
′
κ =

c

2 v

∣∣∣∣ v̄s
|v̄e|

× v̄r
|v̄r|

∣∣∣∣ ror2r drr (554)

which is for 0 ≤ v ≤ c

d
′
κ =

1

2

ro
r2r
drr sin θ (555)

The divergences of the two fields for v ≪ c are

∇̄ · d ′
H̄s =

3π

8

c
√
m

ro
=

3π3/2

4

√
m c2

4πr2o
=

3π3/2

4

√
Eo
So

and ∇̄ · d ′
Hn = 0 (556)

with So = 4πr2o the area of the particle and Eo

So
the energy density.

For massless points we get

∇̄ · d ′
H̄s = 0 and ∇̄ · d ′

H̄n = 0 (557)

and we can define vector fields

d
′
H̄s = ∇̄ × d

′
M̄s and d

′
H̄n = ∇̄ × d

′
M̄n (558)

For the cumulated fields we have

∫ ∞

rr

d
′
H̄s = −Hs

∫ ∞

rr

d
′
κ ēr and

∫ ∞

rr

d
′
H̄n = Hn

∫ ∞

rr

d
′
κ ēγ (559)
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with ∫ ∞

rr

d
′
κ =

1

2

ro
rr

sin θ (560)

The divergences for v ≪ c are

∇̄ ·
∫ ∞

rr

d
′
H̄s =

3

8

c
√
m

ro
and ∇̄ ·

∫ ∞

rr

d
′
Hn = 0 (561)

From

d
′
F̄in =

d
′
pn
dt

=
1

8 π

√
m ro rot

d

dt

∫ ∞

rr

d
′
H̄n (562)

we get

d
′
p̄n =

1

8 π

√
m ro rot

∫ ∞

rr

d
′
H̄n (563)

and

∇̄ · d ′
p̄n = 0 (564)

which is the conservation law for the linear momentum due to the d
′
H̄n field. The

same result we get for the linear momentum due to the d
′
H̄s field from eq.(429) for

d
′
F̄is .

We define vector fields

d
′
p̄n = ∇̄ × N̄n with N̄n =

1

8 π

√
m ro

∫ ∞

rr

d
′
H̄n (565)

and

d
′
p̄s = ∇̄ × N̄s with N̄s =

1

8 π

√
m ro

∫ ∞

rr

d
′
H̄s (566)

and the corresponding divergences are

∇̄ · N̄n = 0 because ∇̄ ·
∫ ∞

rr

d
′
H̄n = 0 (567)

and

∇̄ · N̄s =
1

8 π

√
m ro ∇̄ ·

∫ ∞

rr

d
′
H̄s =

3

64π
m c (568)

With the 1. Maxwell equation (518) where d
′
F̄i = d

′
F̄in
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d

dt
[d

′
F̄in ] = − 1

8π
c2 ro

√
m rot

[
rot rot

∫ ∞

rr

d
′
H̄n

]
and the equation (562) for the force d

′
F̄in we get

∇̄ × ∇̄ ×
∫ ∞

rr

d
′
H̄n +

1

c2
d2

dt2

∫ ∞

rr

d
′
H̄n = 0 (569)

Because of

∇̄ × ∇̄× = ∇̄∇̄ − ∆ (570)

we get

∆

∫ ∞

rr

d
′
H̄n − 1

c2
d2

dt2

∫ ∞

rr

d
′
H̄n = 0 (571)

A similar expression we have in standard theory for the vector field Ā after intro-

ducing the Lorenz gauge condition. We conclude, that the present theory is Lorentz

invariant without the need of any gauge.

7.10 Synopsis of the fundamental equations for the generation

of linear momentum between BSPs.

The Fundamental equations for the generation of linear momentum can be classified in

1. between two static BSPs

2. between two moving BSPs

3. between a moving and a static BSP

1) The equation for the generation of linear momentum between two static BSPs

(static) is (See Fig. 26) based on the postulate 6 for the interaction between longitudinal

angular momentums J̄s of FPs.

d
′
pstat s̄R =

a

c

∮
R

{
d̄l · (s̄e1 × s̄s2)

2πR

∫ ∞

r1

He1 dκr1

∫ ∞

r2

Hs2 dκr2

}
s̄R (572)

where s̄R is a unit vector perpendicular to the plane that contains the closed path

with radius R.

After integration over the whole space we get
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pstat s̄R =

∫
σ

d
′
pstat s̄R (573)

The linear momentum generated between two static BSPs is the motor of all move-

ment of particles.

Equation (572) gives the curve from Fig. 29 that describes the Coulomb law for

d≫ ro.

2) The equation for the generation of linear momentum between two moving BSPs

(dynamic) is based on the postulate 7 for the interaction between transversal angular

momentums J̄n of FPs.

d
′
pdyn s̄R =

1

c

∮
R

{
d̄l · (n̄1 × n̄2)

2πR

∫ ∞

r1

Hn1 dκr1

∫ ∞

r2

Hn2 dκr2

}
s̄R (574)

(See Fig. 47). Equation (574) contains the Lorentz, Ampere, Bragg and one com-

ponent of the gravitation laws.

3) The equation for the generation of linear momentum between a moving and a

static BSP (induced) is based on the postulate 8 for the interaction between the angular

momentum J̄ of one BSP and the longitudinal angular momentum J̄s of another BSP.

d
′
p
(s)
ind s̄R =

1

c

∮
R

{
d̄l · s̄
2πR

∫ ∞

rr

Hs dκrr

∫ ∞

rp

Hsp dκrp

}
s̄R (575)

d
′
p
(n)
ind s̄R =

1

c

∮
R

{
d̄l · n̄
2πR

∫ ∞

rr

Hn dκrr

∫ ∞

rp

Hsp dκrp

}
s̄R (576)

(See Fig. 53 and Fig. 54). The upper indexes (s) or (n) denote that the linear

momentum d
′
pind on the static BSP is induced by the longitudinal (s) or transversal

(n) field of the moving BSP.

Equation (576) contains the first and the second Maxwell laws and one component

of the gravitation law.

The force for all the fundamental equations is given by

d
′
F s̄R =

d
′
p

∆t
s̄R with ∆t = K ro1 ro2 F̄ =

∫
σ

d
′
F̄ (577)

Note: The coordinate system selected to decide if a BSP under observation is
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moving or not is the coordinate system of the measuring equipment of the laboratory

with its BSPs in rest in that coordinate system, BSPs that provide the regenerating

fundamental particles for the BSP under observation.

The force on a BSP that moves with the speed v and which is exposed to the above

listed momenta is

F̄tot = F̄stat + F̄dyn + F̄
(s)
ind + F

(n)
ind (578)

If there is no isolated moving BSP inducing on the BSP under observation we have

that

F̄tot = F̄stat + F̄dyn (579)

Note: With the adequate definitions all above listed forces are derived as rotors

from the vector field generated by the longitudinal and transversal angular momenta

of the two types of fundamental particle defined at the beginning of this work.

d
′
F̄ =

d
′
p

dt
=

1

8 π

√
m ro rot

d

dt

∫ ∞

rr

d
′
H̄ (580)

7.10.1 Relativistic expressions of the fundamental equations.

In sec. 7.10 the general form of the fundamental equations for the generation of linear

momentum between BSPs was presented. This section shows the relativistic influence

of each differential part of the equations. We start first with the repetition of some

definitions and conveniently formulation of equations for our objective:

d
′
κ =

∫ ∞

rr

dκ = ro

∫ ∞

rr

dξ = ro d
′
ξ with d

′
ξ =

∫ ∞

rr

dξ (581)

∆t = Kro1ro2 with ro =
ℏ c
E

=
ℏ c√

E2
o + E2

p

=
ℏ c
m c2

β (582)

∆t = K
ℏ2 c2

m2c4
β1 β2 with βi =

√
1− v2i

c2
(583)

Hs =
√
Es =

Eo√
E

Hn =
√
En =

Ep√
E

He =
√
E (584)

E =
√
E2
o + E2

p = mc2 β−1 Ep = mcvβ−1 (585)
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1) Equation (572) for the Coulomb force can be written in a different differential

form as:

d
′′
Fstat =

d
′′
pstat
dt

=
∆

′′
pstat
∆t

=
a

c

∆
′′
Ep

∆t
=

a

c ∆t
He1 Hs2 d

′
κr1 d

′
κr2 (586)

For Coulomb the BSPs don’t move and it is He1 = Hs2 =
√
mc and we get

d
′′
Fstat =

a

c ∆t
mc2 d

′
κr1 d

′
κr2 =

a

c ∆t
mc2 ro1 ro2 d

′
ξr1 d

′
ξr2 (587)

and finally with ∆t = Kro1ro2

d
′′
Fstat =

a

c K
mc2 d

′
ξr1 d

′
ξr2 (588)

It is clear that for the Coulomb force the relativistic factors are β = 1 because the

speeds of the BSPs are zero and therefore β doesn’t appear in the equations.

2) Now we make the same procedure for equation (574) which is the basic equation

for the Lorentz, Ampere and Bragg forces. The currents that generate the forces are

continuous currents and Hn1 and Hn2 are not functions of the time.

d
′′
Fdyn =

1

c ∆t
d

′′
Epdyn =

1

c ∆t
Hn1 Hn2 ro1 ro2 d

′
ξr1 d

′
ξr2 (589)

With Hn =
√
m v β−1/2 we get

d
′′
Fdyn =

m v1 v2
c K

β
−1/2
1 β

−1/2
2 d

′
ξr1 d

′
ξr2 (590)

The β factors in eq. (590) show the relativistic behaviour of the equation.

3) Now we make the procedure for eq. (576) which is the basic equation for the

Maxwell and gravitation forces. In this case Hn is function of the time and we have to

start with eq. (394) and eq. (421) that follow:

d

dt

∫ ∞

rr

¯dHn =
1

2

d

dt
[Hn]

ro
rr

sinφ dφ s̄γ − Hn v
ro
r2r

sinφ cosφ dφ s̄γ (591)

d
′
F̄in =

1

8 π

√
mp rop rot

d

dt

∫ ∞

rr

d
′
H̄n (592)

We modify eq. (591) including the variable dγ that was omitted before because of

symmetry reasons.

142



d

dt

∫ ∞

rr

d
′′
H̄n =

1

2

d

dt
[Hn]

ro
rr

sinφ dφ
dγ

2π
s̄γ − Hn v

ro
r2r

sinφ cosφ dφ
dγ

2π
s̄γ (593)

Correspondingly eq. (592) is modified.

d
′′
F̄in =

1

8 π

√
mp rop rot

d

dt

∫ ∞

rr

d
′′
H̄n (594)

The terms in eq. (593) can be separated in factors that are exclusively functions of

v(t) and factors that are exclusively functions of the space coordinates. We can write

eq. (594) as

d
′′
F̄in =

1

8 π

√
mp rop

{
d

dt
[Hn] rotK̄1ind

− v Hn rotK̄2ind

}
(595)

where

K̄1ind
=

1

2

ro
rr

sinφ dφ
dγ

2π
s̄γ and K̄2ind

=
ro
r2r

sinφ cosφ dφ
dγ

2π
s̄γ (596)

For ∆v = c− v << c it is

Hn ≈
√
Ep =

√
m c v β−1/2 and

d

dt
[Hn] ≈

d

dt

[
(m c v)1/2 β−1/2

]
(597)

and eq. (595) writes

d
′′
F̄in =

1

8π

√
mprop

{
d

dt

[
(mcv)1/2β−1/2

]
rotK̄1ind

− v
√
mcvβ−1/2rotK̄2ind

}
(598)

The β factors in eq. (598) show the relativistic behaviour of the equation.

8 Corner-pillars of the “E & R” UFT model

The corner-pillars of the proposed model are:

1. Nucleons are composed of electrons and positrons

2. A space with Fundamental Particle (FPs) with angular momenta is postulated.

3. Electrons and positrons are represented as focal points of rays of FPs where the

energy of the electrons and positrons is stored as rotation.
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4. FPs are emited with c or ∞ from the focus. The focus is regenerated by FPs

that move with c or ∞ relative to the focus.

5. Regenerating FPs are those that are emited by other focuses. A focus is stable

when emission and regeneration is energetically balanced.

6. Pairs of FPs with opposed angular momenta generate linear momenta on focuses.

7. Interactions between subatomic particles are the product of the interactions of

their FPs when they cross in space. The probability that they cross follows the

radiation law.

8. The interactions between FPs are so defined, that the fundamental equations

(Coulomb, Ampere, Lorentz, Newton, Maxwell, etc.) can be mathematically

derived.

9. Neutrinos are parallel moving pairs of FPs with opposed angular momenta.

10. Photons are a sequence of neutrinos with their potential linear momenta oriented

alternatelly oposed.

11. Photons that move with c ± v are reflected and refracted by optical lenses and

electric antenas with c.

All experiments that can be explained with the SM must also be at least explained

with the E & R model. The explanations must not be equal to those of the SM.

Note: The fundamental laws (Coulomb, Ampere, Lorentz, Newton, Maxwell, etc.)

were deduced with measurements that took place under conditions where the nucleons

involved were adequatelly regenerated to be stable. At relativistic speeds and at heavy

atomic nuclei the regeneration can become deficient and produce instability. They

decay in configurations that can be adequtely regenerated by the enviroment, in other

words, in stable configurations.

The interactions between subatomic particles take place at the regenerating FPs

that move along the rays with the speed c or ∞. The laws that were deduced for stable

configurations (Coulomb, Ampere, Lorentz, Newton, Maxwell, etc.) not necessarilly

must work for unstable particles where emission and regeneration are not in balance.

The model “E & R” only takes into consideration stable partikles, in other words,

electrons, neutrons, protons, neutrinos, photons and their antiparticles. Positrons are

only stable in configurations like the nucleons. The many short-lived configurations

are not taken into account because they not necessarilly follow the known fundamental

laws.
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Part IV Miscellaneous I

9 Quantification of irradiated energy and movement.

9.1 Quantification of irradiated energy.

To express the energy irradiated by a BSP as quantified in angular momenta over time

we start with

E = Ee = Es + En =
√
E2
o + E2

p ∆t = Krorop ro =
ℏ c
Ee

rop =
ℏ c
Eo

(599)

with ro the radius of the moving particle and rop the radius of the resting probe

particle. It is

∆t = Krorop
rop
rop

= Kr2op
ro
rop

= ∆ot
ro
rop

(600)

with

∆ot = ∆t(v=0) = K
ℏ2 c2

E2
o

= 8.082097 · 10−21 s with K = 5.4274 · 104 s/m2 (601)

We now define Ee ∆t and get

Ee ∆t = K
ℏ2 c2

Eo
= K

h2

4 π2 m
= h (602)

equation that is valid for every speed 0 ≤ v ≤ c of the BSP giving

Ee ∆t = Eo ∆ot = h (603)

where h is the Planck constant.

Note: In the equation Ee ∆t = h the energy Ee is the total energy of the moving

particle and the differential time ∆t is the time the differential momentum ∆p is active

to give the force F = ∆p/∆t between the moving and the probe particle.

In connection with the quantification of the energy E = J ν the following cases are

possible:

• A common frequency νg exists and the angular momentum J is variable. This

assumption was made in Sec. 2.8.1, for FPs of BSPs with v ̸= c that define an

electron or a positron.
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• A common angular momentum Jg exists and the frequency ν is variable. This

assumption was made in sec. 2.8.2 for FPs of BSPs with v ̸= c that define an

electron or a positron.

The concept is shown in Fig. 60.
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Figure 60: Quantification of linear momentum

We define for a common angular momentum Jg = h the equivalent angular frequen-

cies ν, νo and νp with the following equations

E = Ee = h ν ν =
1

∆t
and Ep = p c = h νp (604)

and

Eo = m c2 = h νo νo =
1

∆ot
= 1.2373 · 1020 s−1 (605)

We have already defined the angular frequencies νe, νs and νn for the FPs with the

following equations

Ee = Es + En and dEe = dEs + dEn (606)

With a common angular momentum Jg = h it is
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dEe = Ee dκ = h νe dEs = Es dκ = h νs dEn = En dκ = h νn (607)

The relation between the angular frequencies of FPs and the equivalent angular

frequencies is

ν =
∑
i

νei =
∑
i

νsi +
∑
i

νni
=

√
ν2o + ν2p (608)

If all FPs have the same angular frequency νei = νsi = νni
= νFP we get

ν = Ne νFP = Ns νFP + Nn νFP =
√
ν2o + ν2p (609)

with N the corresponding total number of FPs of the BSP. If we multiply the

equation with h we get

h ν = Ne h νFP = Ns h νFP + Nn h νFP = h
√
ν2o + ν2p (610)

or

E = Ee = Es + En =
√
E2
o + E2

p (611)

with EFP = h νFP the energy of one FP.

We define the quantized emission of energy for a BSP with v ̸= c defining the power

as

Pe =
Ee
∆t

= Ee ν ν =
1

∆t
(612)

Pe =
Ee
∆t

=
1

∆t

√
E2
o + E2

p =
√
P 2
o + P 2

p = Es ν + En ν = Ps + Pn (613)

where

Po = Eo ν Pp = Ep ν Ps = Es ν Pn = En ν (614)

For the differential powers we get

dPe = ν Ee dκ dPs = ν Es dκ dPn = ν En dκ (615)

Fundamental equations expressed with the powers exchanged by the
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BSPs.

Now we show that the fundamental equations of sec 7.10 for the generation of linear

momentum can be expressed as functions of the powers of their interacting BSPs.

With

dE = E dκ dH =
√
E dκ = H dκ and

H√
∆t

=
√
E ν =

√
P (616)

the equations for the Coulomb, Ampere and induction forces of sec. 7.10 can be

transformed to

d
′
F s̄R =

d
′
p

∆t
s̄R ∝ 1

c

∮
R

{∫ ∞

r1

H1√
∆t

dκr1

∫ ∞

r2

H2√
∆t

dκr2

}
s̄R (617)

and expressed as a function of the powers of the interacting BSPs

d
′
F s̄R =

d
′
p

∆t
s̄R ∝ 1

c

∮
R

{∫ ∞

r1

√
P1 dκr1

∫ ∞

r2

√
P2 dκr2

}
s̄R (618)

It is also possible to define differential energy fluxes for BSPs. We start with

dPe = ν Ee dκ dPs = ν Es dκ dPn = ν En dκ (619)

and with

dκ =
1

2

ro
r2
dr sinφ dφ

dγ

2π
and dA = r2 sinφ dφ dγ (620)

The concept is shown in Fig. 61.

Electron

jd

cve =
r

r

gd
h

dS

dA

j

Figure 61: Emitted Energy flux density dS of a moving electron

The cumulated differential energy flux is

148



∫ ∞

r

dPe = ν E

∫ ∞

r

dκ = ν E
1

2

ro
r

sinφ dφ
dγ

2π
J s−1 (621)

The cumulated differential energy flux density is∫ ∞

r

dSe =
1

dA

∫ ∞

r

dPe = ν Ee
1

4π

ro
r3

J

m2 s
(622)

To get the total cumulated energy flux through a sphere with a radius r we make

ro = r and integrate over the whole surface A = 4π r2 of the sphere and get

4π r2
∫ ∞

r

dSe = ν Ee
J

m2 s
(623)

Note: The differential energy flux density is independent of φ and γ and therefore

independent of the direction of the speed v. This is because of the relativity of the

speed v that does not define who is moving relative to whom.

Physical interpretation of an electron and positron as radiating and ab-

sorbing FPs:

The emitted differential energy is

dEe = Ee dκ =
h

∆t

1

2

ro
r2
dr sinφ dφ

dγ

2π
(624)

With the help of Fig. 61 we see that the area of the sphere is A = 4πr2, and we get

dEe =
h

∆t A
ro dr sinφ dφ dγ (625)

We now define

dEe = σh ro dr sinφ dφ dγ with σh =
h

∆t A
(626)

where σh is the current density of fundamental angular momentum h.

We can also write

dEe = σh dA with dA = ro dr sinφ dφ dγ (627)

9.2 Energy and density of Fundamental Particles.

9.2.1 Energy of Fundamental Particles.

The emission time of photons from isolated atoms is approximately τ = 10−8 s what

gives a length for the train of waves of L = c τ = 3 m. The total energy of the emitted

photon is Et = h νt and the wavelength is λt = c/νt. We have defined (see Fig. 60,
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Fig 68 and Fig. 69), that the photon is composed of a train of FPs with alternated

opposed angular momenta where the distance between two consecutive FPs is equal

λt/2. The number of FPs that build the photon is therefore NFP = L/(λt/2) and we

get for the energy of one FP

The concept is shown in Fig. 62
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Figure 62: Photon as sequence of opposed angular momenta

EFP =
Et
NFP

=
Et λt
2 L

=
h

2 τ
= 3.313 · 10−26 J = 2.068 · 10−7 eV (628)

and for the angular frequency of the angular momentum h

νFP =
EFP

h
=

1

2 τ
= 5 · 107 s−1 (629)

Finally we get
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νt = NFP νFP = 5 · 107 NFP s
−1 with NFP =

c τ

λt/2
(630)

Note: The frequency νt represents a linear frequency where the relation with the

velocity v and the wavelength λt is given by v = λt νt. The frequency νFP represents

the angular frequency of the angular momentum h.

The momentum generated by a pair of FPs with opposed angular momenta is

pFP =
2 EFP

c
= 2.20866 · 10−34 kg m s−1 (631)

Note: Isolated FPs have only angular momenta, they have no linear momenta

and therefore cannot generate a force through the change of linear momenta . Linear

momentum is generated only out of pairs of FPs with opposed angular momentum as

defined in sec. 2.10. It makes no sense to define a dynamic mass for FPs because they

have no linear inertia, which is a product of the energy stored in FPs with opposed

angular momenta. FPs that meet in space interact changing the orientation of their

angular momenta but conserving each its energy EFP = 3.313 · 10−26 J .

The number NFPo of FPs of an resting BSP (electron or positron) is

NFPo =
Eo
EFP

= 2.4746 · 1012 (632)

9.2.2 Density of Fundamental Particles.

From sec. 2.15 we have that

dE = E dκ = E
1

2

ro
r2
dr sinφ dφ

dγ

2π
and dV = r2 dr sinφ dφ dγ (633)

resulting for the energy density

ω =
dE

dV
=

E

4π

ro
r4

J m−3 (634)

The density of FPs we define as

ωFP =
ω

EFP
=

1

4π

E

EFP

ro
r4

m−3 (635)

with EFP = h νFP = 3.313 · 10−26 J .

The concept is shown in Fig. 63

The energy emitted by a BSP is equal to the sum of the energies of the regenerating

FPs with longitudinal (s) and transversal (n) angular momenta. The corresponding
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densities are

ω
(s)
FP =

1

4π

Es
EFP

ro
r4

ω
(n)
FP =

1

4π

En
EFP

ro
r4

m−3 (636)

As Ee = Es + En we get

ω
(e)
FP = ω

(s)
FP + ω

(n)
FP m−3 (637)

The number dNFP of FPs in a volume dV is given with

dNFP = ωFP dV and with dV = r2 dr sinφ dφ dγ (638)

we get

dNFP =
1

2π

E

EFP
dκ (639)

With the definition of µFP = EFP/c
2, where µFP is the dynamic mass of a FP, we

get for the density of the mass

ωµ =
µFP dNFP

dV
= µFP ωFP kg m−3 (640)

The rest mass m of a BSP expressed as a function of the dynamic mass µFP of its

FPs is
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m = NFPo µFP =
νo
νFP

µFP (641)

Note: In the present theory all BSPs are expressed through FPs with the Energy

EFP , the angular frequency νFP and the dynamic mass µFP .

9.3 Quantification of movement.

An isolated moving BSP has a potential energy

E = Es + En (642)

which is a function of the relative speed v to the selected reference coordinate. The

potential energy will manifest when the isolated moving BSP interacts with a BSP

which is static in the selected coordinate system.

The time variation ∆t derived for the variation dp of the momentum for the

Coulomb, Ampere and Induction forces between two BSPs, we use also as time varia-

tion to describe the movement of a BSP that moves with constant speed v = ∆x/∆t

where dp = 0.

The energy En is responsible for the movement of the BSP and the number of FPs

that generate the movement during the time ∆t is

N
(n)
FP =

En
EFP

(643)

The total momentum of a BSP moving with constant speed v is therefore

p = m v = N
(n)
FP pFP = m

∆x

∆t
(644)

with pFP defined in eq. (631). For ∆x we get

∆x = N
(n)
FP pFP

∆t

m
(645)

For v = 0 we get

v = 0 En = 0 N
(n)
FP = 0 ∆x = 0 (646)

For v → c we get with ∆t = K r2o with ro the radius of the moving BSP

v → c Ep → ∞ En → ∞ N
(n)
FP → ∞ ∆t→ 0 (647)

lim
v→c

∆x = lim
v→c

2 K ℏ2 c
m Ep

= 0 for v → c (648)
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lim
v→c

∆x

∆t
= v (649)

Note: For the isolated BSP moving with constant speed v we have no static probe

BSP with radius rop that measures the force between them, force that is zero because

dp = 0. There is no difference between the two BSPs and the equation ∆t = K ro rop

becomes ∆t = K r2o with ro the radius of the moving BSP.

10 Analysis of linear momentum between two static

BSPs.

In this section the static eq.(572) is analyzed in order to explain

• why BSPs of equal sign don’t repel in atomic nuclei

• how gravitation forces are generated

• why atomic nuclei radiate

Although the analysis is based only on the static eq.(572) for two BSPs, neglecting

the influence of the important dynamic eq.(574) that explains for instance the magnetic

moment of nuclei, it shows already the origin of the above phenomena.

With the integration limits shown in Fig. 64

1 2

d

minj

maxj

1or
2or

1r2r
b

Figure 64: Integration limits for the calculation of the linear momentum
between two static basic subatomic particles at the distance d

and considering that for static BSPs it is ro1 = ro2 = ro and m1 = m2 = m, the

integration limits are

φmin = arcsin
ro
d

φmax = π − φmin for d ≥
√
r2o + r2o (650)

φmin = arccos
d

2 ro
φmax = π − φmin for d <

√
r2o + r2o (651)
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and eq.(572) transforms to

pstat =
m c r2o
4 d 2

∫ φ1max

φ1min

∫ φ2max

φ2min

| sin3(φ1 − φ2)| dφ2 dφ1 (652)

The double integral becomes zero for d → 0 because the integration limits ap-

proximate each other taking the values φmin = π
2
and φmax = π

2
. For d ≫ ro the

double integral becomes a constant because the integration limits tend to φmin = 0

and φmax = π.

Fig.65 shows the curve of eq.(194) where five regions can be identified with the help

of d/ro = γ from the integration limits:
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Figure 65: Linear momentum pstat as function of γ = d/ro between two static
BSPs with equal radii ro1 = ro2

1. From 0 ≪ γ ≪ 0.1 where pstat = 0

2. From 0.1 ≪ γ ≪ 1.8 where pstat ∝ d 2

3. From 1.8 ≪ γ ≪ 2.1 where pstat ≈ constant

4. From 2.1 ≪ γ ≪ 518 where pstat ∝ 1
d

5. From 518 ≪ γ ≪ ∞ where pstat ∝ 1
d 2 (Coulomb)
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See also Fig. 66

The first and second regions are where the BSPs that form the atomic nucleus

are confined and in a dynamic equilibrium. BSPs of different charges don’t mix in

the nucleus because of the different signs their longitudinal angular momentum of the

emitted FPs have.

For BSPs that are in the first region, the attracting or repelling forces are zero

because the angle between their longitudinal rotational momentum is β = π. BSPs

that migrate outside the first region are reintegrated or expelled with high speed when

their FPs cross with FPs of the remaining BSPs of the atomic nucleus because the

angle β < π. At stable nuclei all BSPs that migrate outside the first region are

reintegrated, while at unstable nuclei some are expelled in all possible combinations

(electrons, positrons, hadrons) together with neutrinos and photons maintaining the

energy balance.

As the force induced on other particles during reintegration described by eq. (576)

has always the direction and sense of the reintegrating particle (right screw of J̄n)

independent of its charge, BSPs that are reintegrated induce on other atomic nuclei

the gravitation force. The inverse square distance law for the gravitation force results

from the inverse square distance law of the radial density of FPs that transfer their

angular momentum from the moving to the static BSPs according postulate 8). See

sec. 17.3 for induced gravitation force.

The third region gives the width of the tunnel barrier through which the ex-

pelled particles of atomic nuclei are emitted. As the reintegration process of BSPs that

migrate outside the first region depend on the special dynamic polarization of the re-

maining BSPs of the atomic nucleus, particles are not always reintegrated but expelled

when the special dynamic polarization is not fulfilled. The emission is quantized and

follows the exponential radioactive decay law.

The fourth region is a transition region to the Coulomb law.

The transition value γtrans = 518 to the Coulomb law was determined by comparing

the tangents of the Coulomb equation and the curve from Fig.65. At γtrans = 518 the

ratio of their tangents begin to deviate from 1.

At the transition distance dtrans, where γtrans = 518, the inverse proportionality to

the distance dtrans from the neighbor regions must give the same force Ftrans

Ftrans =
1

∆t

K
′

dtrans
=

1

∆t

K
′
F

d 2
trans

(653)

with K
′
and K

′
F the proportionality factors of the fourth and fifth regions.
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The transition distance for BSPs (electron and positron) is:

dtrans = γtrans ro = γtrans
ℏ c
Eo

= 518 · 3.859 · 10−13 = 2.0 · 10−10 m (654)

which is of the order of the radii of neutral isolated atoms.

The fifth region is where the Coulomb law is valid.

The concept is shown in Fig. 66
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Vo Vo

0

Figure 66: Potential well of an atom.

Fig. 67 shows potential energies corresponding to different theoretical models. All

potential energies from existing models are not defined for the distance between charged

particles tending to zero, what forces to define the potential energy as negative and to

place the zero at infinite.

The potential energy of the present approach is defined for the distance between

charged particles tending to zero allowing to place the the origin of the potential energy

at d = 0.

The potential is given by

V (d) =

∫ d

0

Fstat δd =
1

∆t

∫ d

0

pstat δd for d→ ∞ we get ≈ 1.0 GeV (655)

The energy of 1.0 GeV is the energy necessary to separate an electron from a

positron from the distance between them d = 0 to d = ∞.
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Figure 67: Comparison of potential energies between charged particles

11 Classification of BSPs with v = c.

BSPs with v = c have no nucleus where fundamental particles are emitted and absorbed

and therefore have no charge characteristics and pass through each other without col-

lision. They are constituted of fundamental particles with the energy stored in pairs

of opposed angular momentums J̄ .

BSPs with v = c are classified in two types according if they were generated on

emitted or regenerating FPs.

BSPs with v = c generated on regenerating FPs can be classified according to the

linear momentum they may generate on a static probe BSP, in

• BSP with potential linear momentum py = p
∥
c in propagation direction Fig. 68

a).
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• BSP with potential linear momentum py = p
∥
c opposed to propagation direction.

Same as Fig. 68 a) but with inverted directions of angular momentum J
′
xy and

linear momentum py = p
∥
c .

• BSP with potential linear momentum pz = p⊥c perpendicular to the propagation

direction Fig. 68 b).

• Complex SP with potential linear momentum perpendicular and in propagation

direction. Fig. 68 c).

Figure 68: BSPs with light speed generated on regenerating FPs
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Fig.69 d) shows BSPs with v = c generated on emitted FPs which are the neutrinos.

)d

xyJ

xyJ-
xyJ

xyJ-

Figure 69: BSPs with light speed generated on emitted FPs (neutrinos)

Note: Photons are complex particles formed by more than one BSP separated by

the distance λ/2 in the direction of movement Fig. 68 c). BSPs with transversal linear

momentum pz of a complex particle form pairs with opposed transversal directions and

give the complex SP the character of a wave. The energy associated independently with

the longitudinal or transversal linear momentum is ℏω. The resulting linear momentum

at each BSP is shown in Fig. 70. Considering the possibility of BSPs with potential

linear momentum py = p
∥
c opposed to the propagation direction, the wave character

may also be generated in longitudinal direction.
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Figure 70: Linear momentum p on a probe BSP generated by a
basic subatomic particle with v = c (GP=FP)
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12 Induction between a moving and a probe BSP.

In the present approach the energy of a BSP is distributed in space around the radius

of the BSP. The carriers of the energy are the angular momentums of FPs that are

continuously emitted, and regenerate the BSP. At a free moving BSP each angular

momentum of a FP is balanced by an other angular momentum of a FP of the same

BSP. Opposed transversal angular momentums (dH̄n and −dH̄n in Fig. 71) from

two FPs that regenerate the BSP produce the linear momentum p̄ of the BSP. If

a second static probe BSPp appropriates with its regenerating angular momentums

(dH̄sp) angular momentums (dH̄n) from FPs of the first BSP according postulate 3,

angular momentums that built a rotor different from zero in the direction of the second

BSPp generating dp̄ip , the first BSP loses energy and its linear momentum changes

to p̄ − dp̄i. The angular momentums appropriated at point P by the probe BSPp

generating the linear momentum dp̄ip are missing now at the first BSP to compensate

the angular momentums at the symmetric point P
′
. The linear momentums at the

two symmetric points are therefore equal and opposed d
′
p̄i = −dp̄ip because of the

symmetry of the energy distribution function dκ(π − θ) = dκ(θ).
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Figure 71: Linear momentum balance between static and moving BSPs

As the closed linear integral
∮
dH̄n dl̄ generates the linear momentum p̄ of a BSP, the

orientation of the field dH̄n (right screw in the direction of the velocity) is independent

of the sign of the BSP, sign that is defined by J̄
(±)
e .
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13 Conventions introduced for BSPs.

Fig. 72 shows the convention used for the two types of electrons and positrons intro-

duced.

The accelerating positron emits FPs with high speed ve = vh ≈ ∞ and positive

longitudinal angular momentum J̄ +
s (∞+) and is regenerated by FPs with low speed

vr = vl = c and negative longitudinal angular momentum J̄ −
s (c−).

The decelerating electron emits FPs with low speed ve = vl = c and negative

longitudinal angular momentum J̄ −
s (c−) and is regenerated by FPs with high speed

vr = vh ≈ ∞ and positive longitudinal angular momentum J̄ +
s (∞+).

BSP ngAccelerati

BSP ngDecelerati

BSP Positive BSP Negative

BSP NegativeBSP Positive

+acc
-acc

+dec
-dec

Figure 72: Conventions for BSPs

FPs emitted by BSPs are the regenerating FPs for other BSPs as follows:

• emitted FPs of the acc+ regenerate the dec−

• emitted FPs of the acc− regenerate the dec+

• emitted FPs of the dec+ regenerate the acc−

• emitted FPs of the dec− regenerate the acc+
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FPs of the same speed, direction and opposed angular momentum compensate each

other so that the following compensation of BSPs results:

• acc+ compensates acc−

• dec+ compensates dec−

Protons and neutrons can be seen as composed of electrons and positrons except

for the binding energy.

We have the following possible types of protons, anti-protons and neutrons:

• dec+/acc− − proton with n+ = 919 and n− = 918

• acc+/dec− − proton with n+ = 919 and n− = 918

• dec−/acc+ − anti− proton with n− = 919 and n+ = 918

• acc−/dec+ − anti− proton with n− = 919 and n+ = 918

• dec+/acc− − neutron with n+ = 919 and n− = 919

• acc+/dec− − neutron with n+ = 919 and n− = 919

The two possible types of protons are shown in Fig. 73

The two possible types of anti-protons are shown in Fig. 74

The two possible types of neutrons are shown in Fig. 75

If we overlap the two types of protons the internal FPs compensate because of the

acc+ / acc− and the dec+ / dec− compensations, remaining only the external FPs which

have same speed, opposed angular momentum but different directions. The same we

have for the two types of anti-protons. This is important to explain nuclear magnetic

resonsnce.
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Antiproton
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Atoms are composed of protons, neutrons and electrons. The energy levels of atoms

are filled by electrons with alternated spins, what corresponds in the present approach

to the two types of electrons, namely acc− and dec−.

Fig. 76 shows the Hydrogen and the Helium atoms. Each type of level electron

interacts only with that type of proton in the nucleus that can deliver the right FPs

for its regeneration, what requires that nuclei of atoms are filled with alternate types

of protons in the Mendelejew periodic table , namely acc+dec− and dec+/acc−.

Fig. 77 shows neutrinos and photons.

Neutrinos are pairs of FPs with opposed angular momenta which carry a potential

linear momentum. The linear momentum can be oriented in all directions relative to

the direction of movement of the neutrino. On Fig. 77 longitudinal and transversal

oriented neutrinos are shown.

A photon is a sequence of transversal or longitudinal oriented neutrinos at a distance

equal to the semi wavelength λ/2. On Fig. 77 longitudinal and transversal oriented

photons are shown.
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Fig. 78 shows the difference between Fermions and Bosons at the “E&R” UFT and

the Standard Model.

Fermions

Bosons

SM E&R Examples

Rest mass

No

Rest mass Focal Point

No

Focal Point

Basic: 
electron, positron

Composed: 
Proton, Neutron

Basic: 
Neutrino

Composed: 
Photon

Figure 78: Difference between Fermions and Bosons

Fig. 79 shows the difference between the two states of a Fermion at the “E&R”

UFT and the Standard Model.

SM E&R

Two states Spin 
1

2
+
-

acc/dec
electrons or
positrons

acc=accelerated Fundamental Particles

dec=decelerated Fundamental Particles

Figure 79: Difference between Fermions and Bosons
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14 Flux density of FPs and scattering of particles.

14.1 Flux density of FPs.

At each BSP the flux density of emitted FPs is equal to the flux density of regenerating

FPs although the different speeds of the FPs.

In a complex SP formed by more than one BSP (Fig. 73), a mutual internal

regeneration between the BSPs of the complex SP exists. Part of the emitted positive

rays of FPs with J̄
(+)
e of the positive BSPs of the complex SP regenerate the negative

BSPs of the complex SP, and part of the emitted negative rays of FPs with J̄
(−)
e of

the negative BSPs regenerate the positive BSPs. The other part of the emitted and

regenerating rays of FPs respectivelly radiate into space and regenerate from space.

At a complex SP with equal number of positive and negative BSPs Fig. 75 the flux

density of FPs radiated into space with positive angular momenta is equal to the flux

density of FPs radiated into space with negative angular momenta. The same is valid

for the flux density of regenerating FPs.

At a complex SP with different number of positive and negative BSPs Fig. 73 the

flux density of FPs radiated into space with positive angular momenta is not equal

to the flux density of FPs radiated into space with negative angular momenta. If the

complex SP has more positive BSPs in the nucleous, the flux density of FPs radiated

into space with positive angular momenta is bigger than the flux density of FPs radiated

into space with negative angular momenta and vice versa.

14.2 Scattering of particles.

Elastic scattering.

Elastic scattering we have when the scattering partners conserve their identity. No

photons, neutrinos, electrons, positrons, protons, neutrons are emitted.

There are two types of elastic scatterings according the smallest scattering distance

ds that is reached between the scattering partners.

”Electromagnetic” scatering we have when the smallest scattering distance ds is

in the fifth region of the linear momentum curve pstat of Fig.65 where the Coulomb

force is valid. Electromagnetic scattering is characterized by the inverse square distance

force between particles.

”Mechanical” scatering we have when the smallest scattering distance ds is in the

fourth region of Fig.65. Mechanical scattering is characterized by the combination of

inverse square distance and inverse distance forces between particles.

Plastic or destructive scattering.

Plastic scattering we have when the identity of the scattering partners is modified
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and photons, neutrinos, electrons, positrons, protons or neutrons are emitted.

In plastic or destructive scattering the smallest scattering distance ds enters the

third and second region of the linear momentum curve pstat of Fig.65.

The internal distribution of the BSPs is modified and the acceleration disturbs the

internal mutual regeneration between the BSPs. The angular momenta of each BSP

of the scattering partners interact heavily, and new basic configurations of angular

momenta are generated, configurations that are balanced or unbalanced (stable or

unstable).

In today’s point-like representation the energy of a BSP is concentrated at a point

and scattering with a second BSP requires the emission of a particle (gauge boson) to

overcome the distance to the second BSP which then absorbs the particle. The energy

violation that results in the rest frame is restricted in time through the uncertainty

principle and the maximum distance is calculated assigning a mass to the interchanged

particle (Feynman diagrams).

Conclusion: In the present approach the emission of FPs by BSPs is continuous

and not restricted to the instant particles are scattered. In the rest frame of the scat-

tering partners no energy violation occurs. When particles are destructively scattered,

during a transition time the angular momenta of all their FPs interact heavily according

to the three interaction postulates defined in chapter 2.2 and new basic arrangements

of angular momenta are produced, resulting in balanced and unbalanced configurations

of angular momenta that are stable or unstable, configurations of quarks, hadrons, lep-

tons and photons. The interacting particles (force carriers) for all types of interactions

(electromagnetic, strong, weak, gravitation) are the FPs with their longitudinal and

transversal angular momenta.

The concept is shown in Fig. 80

Note: The proposed theory considers elementary particles those which are sta-

ble as free particles or as part of composed particles like the electron, positron, neutron,

proton, neutrino, photon, nuclei of atoms. All particles with a short life time (tran-

sitory particles) are not elementary particles and are produced at collisions. With

increasing collision energies more and more transitory particles of higher energies can

be produced without adding new substantial information to the theory.
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BSP =Basic Subatomic Particles

CSP=Complex Subatomic Particles (composed of BSP) 
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Legend 

Figure 80: Clasification of particles based on stability
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Figure 81: Clasification of particles based on regeneration
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14.2.1 Feynman diagram.

The proposed approach postulates that subatomic particles (electrons and positrons)

are focal points of rays of FPs that move from infinite to infinite with light and infinite

speed relative to the focal point. The forces between the subatomic particles are

generated by the interactions of the angular momenta of their FPs or dH fields, and

not by the exchanges of particles as the standard model teaches.

An analysis of the decay of radioactive nuclei shows that there is no violation of

conservation of energy. Feynmans flaw consists in assuming that electrons and positrons

are not stable particles and can decay.

0) ;(Åï

g

)p ; (E pp

)p ; (E gg

Figure 82: Feynman diagram

The concept is shown in Fig. 82.

Note: For the following analysis the expression (Ep ; pp) in Fig. 82, is replaced by

(Ek ; pp).

In the rest frame of the incident particle we have that

(Eo ; 0) → (Ek ; pp) + (Eγ ; pγ) (656)

Ek =
√
E ′ 2
o + E2

p Ep = pp c Eγ = pγ c (657)

with

p̄p = −p̄γ Ep = Eγ (658)

∆E = Ek + Eγ − Eo =
√
E ′ 2
o + E2

p + Eγ − Eo (659)

For ∆E = 0 we get
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E
′

o =
√
E2
o − 2 Eo Ep =

√
E2
o − 2 Eo Eγ (660)

For stable BSPs like the electron and the positron which don’t decay by radiation

Ep = Eγ = 0 and E
′
o = Eo.

For CSPs like heavy nuclei that decay by radiation Ep > 0 and E
′
o < Eo.

The same analysis is valid for nuclei that radiate α, β and γ particles. The radiated

energy goes always in detriment of the rest mass Eo of the nuclei. No violation of

conservation of energy occurs.
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15 Bending of the trajectory of a BSP.

In this section the equations for the quantified bending momentum for BSP’s that move

with v ̸= c are deduced.

A BSP that moves with the speed v relatively far from matter does not exchanges

linear momentum with the positive and negative BSP’s that form the matter.

If the distance to the matter is reduced, linear momentums are exchanged with

the BSP’s of the matter, bending the trajectory of the moving BSP. As the BSP’s

forming matter are quantified, also the bending trajectories of the moving BSP’s are

quantified. Responsible for bending are the Coulomb, the Ampere and the induced

forces. Basically we have to analyze for BSP with v ̸= c

• Coulomb bending (sec. 15.2)

• Ampere bending (sec. 15.3)

• Induction bending (sec. 15.4)

The basic forms of bending are:

1. Bending at a free target edge

2. Bending through a target slit

3. Bending through a double target slit

15.1 General considerations.

When a BSP is bent the bending momentum pb = Fb ∆t is quantized. The concept is

shown in Fig. 83.
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Figure 83: Bending of BSPs
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The quantized bending of BSPs are indirectly observed through the bending pat-

terns generated in diffraction experiments. Sharp patterns are only generated if the

bending distance rdi is well defined and equal for all BSPs that are bent. This condition

is fulfilled when electrons have the right energy when they pass between two atoms of

a crystal. As the radius of a BSP is a function of the energy of the BSP, each target

defines with its inter-atomic distance the energy a BSP must have to be properly bent.

The concept is shown in Fig. 84.
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Figure 84: Relation between interatomic distance dA and
radius ro/roc of moving BSP.

The vectorial relation between the bending momentum p̄b, the input momentum p̄i

and the output momentum p̄a is shown in Fig. 85.
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Figure 85: Vector diagram for the bending of particles.

For small bending angles η the bending momentum pb is nearly orthogonal to the

input momentum pi and we can write that
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tan η =
pay
pax

≈ pb
pi

(661)

15.2 Coulomb bending.

In sec. 4.2 we have derived the equation for the force between two static BSPs which

is

F2 =
KF

d 2

∫ φ1max

φ1min

∫ φ2max

φ2min

| sin3(φ1 − φ2)| dφ2 dφ1 (662)

with

KF =
a

4 K

√
m1

√
m2 c = 1.104516 · 10−28

[
kg m3

s2

]
(663)

For d ≫ ro we get the Coulomb law with
∫ ∫

Coulomb
= 2.088768 for the double

integral.

We adapt now the equation for the bending analyses where the distance r between

the moving and static BSPs is variable with the angle φ between the speed v2 and the

distance r. The length from the static BSP perpendicular to the direction of the speed

v2 we designate with rd. We assume that the speed v2 << c to allow the use of the

static Coulomb law. We get

F2 = KF
1

r2

∫ ∫
Coulomb

with KF =
a

4 K
m c [N m2] (664)

with r sinφ = rd we get

F2 = KF
1

r2d
sin2 φ

∫ ∫
Coulomb

(665)

We build now the average of F2 for the BSP moving from −∞ to +∞.

F̄2 = KF
1

r2d

∫ ∫
Coulomb

∫ π

φ=0

sin2 φ dφ =
π

8

KF

r2d

∫ ∫
Coulomb

(666)

The force F2 acts during the time ∆
′′
t = ∆

′′
l/v2 where ∆

′′
l is a constant acting

distance for all BSPs independent of the speed v2.

The total bending moment is

pb = F̄2 ∆
′′
t =

π

8

KF

r2d

∫ ∫
Coulomb

∆
′′
l

v2
∆

′′
l = constant (667)

The bending equation is
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tan η =
pb
pi

=
π

8

KF

r2d

∫ ∫
Coulomb

∆
′′
l

v2 pi
n (668)

15.3 Ampere bending (Bragg law).

15.3.1 Ampere bending deduced from the equation for two infinite parallel

currents of BSPs.

From sec. 4.11 we have that the momentum dp̄ generated between two moving BSPs

due to the interaction of their transversal angular momentum is

dp̄ =
1

c

∣∣∣∣∣
∫ ∞

rr1

dHn1 n̄1 ×
∫ ∞

rr2

dHn2 n̄2

∣∣∣∣∣ (669)

The BSPs that interact now trough their transversal angular momentum are the

moving BSP and the parallel reintegrating BSP of a nucleon described in sec. 17.3.

The concept is shown in Fig. 86
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Figure 86: Bending of BSPs

The deduction of the Bragg equation is similar to the deduction of the force density

of sec. 4.11 with the following variable transformations:
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x = v t ∆x = v ∆
′
t (670)

and integrating then the time from t = −∞ to t = +∞.

With these transformations we arrive to the same eq. (281) of sec. 4.11

for the total force density

F

∆l
=

b

c ∆ot

r2o
64 m

Im1 Im2

d

∫ γ2max

γ2min

∫ γ1max

γ1min

sin2(γ1 − γ2)√
sin γ1 sin γ2

dγ1 dγ2 (671)

with
∫ ∫

Ampere
= 5.8731.

The concept is shown in Fig. 87
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Figure 87: Geometric relations for single moving BSPs.

It is also for v ≪ c

ρx =
Nx

∆x
=

1

2 ro
Im = ρ m v ∆ot = K r2o p = F ∆ot (672)

We get for the force

F =
b

4 ∆ot

5.8731

64 c

√
m v1

√
m v2

d
∆l (673)

We have defined a density ρx of BSPs for the current so that one BSP follows

immediately the next without space between them. As we want the force between one

pair of BSPs of the two parallel currents we take ∆l = 2 ro.

The interaction between the two parallel BSPs takes place along a distance ∆
′′
l =

v2 ∆
′′
t giving a total bending momentum pb = F ∆

′′
t. With all that we get

pb =
b

2 K ro

5.8731

64 c

m v1
d

∆
′′
l (674)
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which is independent of the speed v2. In sec. 17.1 the speed of a reintegrating BSP

is deduced giving v1 = k c with k = 7.4315 · 10−2. We get

pb =
b

2 K ro

5.8731

64 c

m k c

d
∆

′′
l (675)

If we now write the bending equation with the help of tan η = 2 sin θ for small η

and with 2 d = dA we get

sin θ =
pb
2 pi

=

(
5.8731 b m v1
64 c K ro h

∆
′′
l

)
h

2 pi dA
n (676)

To get the Bragg law the expression between brackets must be constant and equal

to the unit what gives for the constant interaction distance ∆
′′
l

∆
′′
l =

64 c K ro h

5.8731 b m k c
= 8.9357 · 10−9 m (677)

We get for the bending momentum and force

pb =
h

dA
n Fb =

1

2

h

d ∆ot
=

1

2

n Eo
d

(678)

The bending force is quantized in energy quanta equal to the rest energy Eo of a

BSP.

Conclusion: We have derived the Bragg equation without the concept of particle-

wave introduced by de Broglie. Numerical results obtained using the quantized ir-

radiated energy instead of the particle-wave are equivalent, different is the physical

interpretation of the underlying phenomenon.

15.3.2 Ampere bending deduced from two parallel moving BSPs.

We start with the equation for one BSP∫ ∞

rr

dEn =

∫ ∞

rr

En dκ =
1

2
En

ro
rr

sinφ dφ
dγ

2π
(679)

From Fig. 39 with φ = Ψ we get h = rr sinφ resulting∫ ∞

rr

dEn =
1

2
En

ro
h

sin2 φ dφ
dγ

2π
(680)

We now pass to the dHn field taking the square root of the energy according the

Note for the Ampere law from sec. 4.11 and get∫ ∞

rr

dHn =
1

2
Hn

√
ro
h

sin2 φ dφ
dγ

2π
(681)

The equation gives the cumulated dH field for the different angles φ of the moving
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BSP to the distance h. To get all contributions at the distance h of the dH field for

all positions the moving BSP takes during its path, we must integrate from φ = 0 to

φ = 2π.

∫ π

φ=0

∫ ∞

rr

dHn =
1

2
Hn

√
ro
h

∫ π

φ=0

sin2 φ dφ
dγ

2π
=
π

4
Hn

√
ro
h

dγ

2π
= dHn(h) (682)

Now we build the cross product of the dHn(h) (see Fig. 41) and get

dH̄n(h1)× dH̄n(h2) =
π

4
Hn1

√
ro
h1

dγ1
2π

π

4
Hn2

√
ro
h2

dγ2
2π

(n̄1 × n̄2) (683)

For the differential linear momentum we get

dp =
ro

64 c
√
h1 h2

Hn1 Hn2 dγ1 dγ2 |n̄1 × n̄2| (684)

With
√
En = Hn =

√
m v and |n̄1 × n̄2| = sin(γ1 − γ2) we get

dp =
ro
64 c

√
mv1

√
mv2

d

sin2(γ1 − γ2)√
sin γ1 sin γ2

dγ1 dγ2 (685)

For the momentum we get

p =
ro
64 c

m v1 v2
d

∫ ∫
Ampere

(686)

and for the force

F =
p

∆ot
=

ro
64 c ∆ot

m v1 v2
d

∫ ∫
Ampere

(687)

The force acts during the path length ∆
′′
l = v2 ∆

′′
t giving the total bending mo-

mentum

pb = F ∆
′′
t =

m k

64 c K ro

∆
′′
l

d

∫ ∫
Ampere

(688)

With 2d = dA, v1 = k c and sin θ = p
2 pi

we arrive to

sin θ =
pb
2 pi

=

(
2 m k

64 K ro h
∆

′′
l

∫ ∫
Ampere

)
h

2 pi dA
(689)

Comparing with the Bragg equation the expression in brackets must be equal to

the unit. With
∫ ∫

Ampere
= 5.8731 and k = 7.4315 · 10−2 we get
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∆
′′
l =

64 K ro h

5.8731 m k 2
= 1.11697 · 10−9 m (690)

The difference to the path length of the previous section is due to the factor 2/b

with b = 0.25.

15.4 Induction bending of a BSP.

The induction bending is based on postulate 8 and described by eq. (394) which has

a term with Hn for constant speed v and a term with dHn/dt for variable speed v.

d

dt

∫ ∞

rr

¯dHn =
1

2

d

dt
[Hn]

ro
rr

sinφ dφ s̄γ − Hn v
ro
r2r

sinφ cosφ dφ s̄γ

The bending is analyzed for constant speed v.

a) Bending with v ≪ c.

When a BSP passes near a sharp matter edge with the speed v the following forces

are induced on the BSP’s of the matter edge, caused by the longitudinal d
′
H̄s and

transversal d
′
H̄n fields.

d
′
F̄i = d

′
F̄in + d

′
F̄is (691)

with

d
′
F̄in =

1

8π

√
mp rop rot

d

dt

∫ ∞

rr

d
′
H̄n (692)

and

d
′
F̄is =

1

8π

√
mp rop rot

d

dt

∫ ∞

rr

d
′
H̄s (693)

For v ≪ c and constant speed we have with eq. (394) and d
′
H̄n = 1

2π
dH̄n that

d

dt

∫ ∞

rr

d
′
H̄n = − 1

2π

√
m v2

ro
r2r

sinφ cosφ n̄ (694)

We neglect the influence of d
′
H̄s because our interest is on the induced force in the

r̄r direction.

With the already introduced transformations (see Fig. 58)

θ = π − φ sin θ = sinφ cos θ = − cosφ dθ = −dφ (695)

and
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C̄
′

n = C
′

r ēr + C
′

γ ēγ + C
′

θ ēθ and ēγ = n̄ (696)

we get

C
′

r ēr = 0 C
′

γ ēγ =
d

dt

∫ ∞

rr

d
′
H̄n =

1

2π

√
m v2

ro
r2r

sin θ cos θ ēγ C
′

θ ēθ = 0

(697)

Because of the small distances rr between the moving BSP and the BSP’s of the

sharp edge we can neglect the time differences of the emitted fundamental particles

and calculate without considering retardation.

We get for the rotor

rot C̄
′

n =
1

2π

√
m v2

ro
r 3
r

[
2 cos2 θ − sin2 θ

]
ēr + 0 · ēγ (698)

1

2π

√
m v2

ro
r3r

sin θ cos θ ēθ

When the particle reaches the closest position to the matter edge, n induction bursts

will occur each lasting ∆t = K ro rop seconds, between the moving BSP and the BSP’s

of the matter edge. The concept is shown in Fig. 88.
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Figure 88: Quantification of the bending trajectory of a basic subatomic particle
at a free matter edge.

The induced force is

d
′
F̄in =

1

8 π

√
mp rop rot C̄

′

n (699)

For rr ≈ rd we have that θ ≈ π/2 and we get for the induced force
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d
′
F̄b =

1

16π 2

√
mp

√
m rop ro

v2

r3d
(700)

The induced bending momentum d
′
p̄b we get with the elementary time ∆t =

K rop ro

d
′
p̄b = d

′
F̄b ∆t =

1

16π 2

√
mp

√
m r2op r

2
o K

v2

r3d
(701)

The total bending momentum is

p̄b =

∫
σ

d
′
p̄b = K

′′′
d

′
p̄b =

K
′′′

16π 2

√
mp

√
m r2op r

2
o K

v2

r3d
(702)

with K
′′′
an equalization constant to be determined trough experimental data.

The bending angle is

sin η =
pay
pa

≈ pb
pi

=
K

′′′

16π 2

√
mp

√
m r2op r

2
o

K

pi

v2

r3d
for η <

π

10
(703)

The radius ro of a BSP is defined by

ro =
ℏ c
E

=
ℏ c√

E2
o + E2

p

rop =
ℏ c
Eo

(704)

with ℏ c = 3.161529299 10−26 [J m].

The bending equation gives the force on the probe BSP at the bending edge. As

velocity is relativ, the same force actuates on the moving BSP but with opposed sign.

Because of the discrete number of BSPs in the matter edge the resulting momentum

is quantified and thus the corresponding bending angle ηik .

With a constant speed v the moving BSP and the static BSPs of the edge change

linear momentum resulting in a bending angle ηik

sin ηik ≈ ηik ∝ ki
r3di

(705)

with rdi the distance between the moving BSP and the BSPs of the edge that

exchanges linear momentum, and ki the number of BSP’s of the edge that exchange

linear momentum.

The bending due to the induced force is always in the same direction independent

of the sign (electron or positron) of the BSPs that interchanges linear momentum. The

two BSP’s always repel each other so that the bending of the moving BSP is always

away from the bending edge.

b) Bending with relativistic v.
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From sec. 7.1.2 and eq. (394) and the deductions made at b) for ∆v ≪ c we get

for the time differentiation of the transversal field

d

dt

∫ ∞

rr

¯dHn = −
√
Ep v

ro
r2r

sinφ cosφ dφ n̄ (706)

For rr ≈ rd we have that θ ≈ π/2 and we get for the induced force

d
′
F̄b =

1

16π 2

√
mp

√
Ep rop ro

v

r3d
(707)

With the elementary time ∆t = K rop ro we get the induced bending momentum

d
′
p̄b = d

′
F̄b ∆t =

1

16π 2

√
mp

√
Ep r

2
op r

2
o K

v

r3d
(708)

The total bending momentum is

p̄b =

∫
σ

d
′
p̄b =

K
′′′

16π 2

√
mp

√
Ep r

2
op r

2
o K

v

r3d
(709)

with K
′′′
an equalization constant to be determined trough experimental data.

The bending angle is

sin η =
pay
pa

≈ pb
pi

=
K

′′′

16π 2

√
mp

√
Ep r

2
op r

2
o

K

pi

v

r3d
for η <

π

10
(710)

15.5 Bending schemas for BSPs with v ̸= c.

1) At a free target edge.

The bending of BSPs with v ̸= c is mainly due to the Ampere force which is inverse

proportional to the distance d, while the Coulomb bending is inverse to d 2, and the

induction bending is inverse to d 3. The bending at a free matter edge is shown in

Fig. 89. To the distance rdi corresponds the bending angle ηi and to the distance rdj
the smaller bending angle ηj. BSP’s designated with the index ”i” pass through the

interatomic spaces of the bending matter. If the radii of the BSPs are comparable

with the interatomic distances, the distance rdi is well defined and equal for all BSPs

and the bending is therefore quantized producing bright and dark patterns. BSP’s

designated with the index ”j” have no defined bending distance and are arbitrarily

bend not producing bright and dark patterns.
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Figure 89: Quantification of the bending trajectories of basic subatomic particles
with v ̸= c at a free metal edge.

2) At a target slit.

The bending of BSP with v ̸= c at a metal slit is shown in Fig. 90.

The bending pattern observed is a superposition of the bending patterns produced

by two bending free matter edges. To get well defined bright and dark patterns, the

distance L to the screen must be much greater compared with the distance b between

the bending edges.

As particles with v ̸= c have no wave character and therefore no interference is

possible, it is not possible to calculate the distance b.

If neutral complex particles (neutrons) are used instead of negative BSP’s (elec-

trons), the discrete bending has its origin in that during the way through the crystal

some BSP’s that form the neutral complex particle change linear momentum with the

BSP’s of the bending edge.

3) At a double slit, grating or crystal.

The bending of BSP’s with v ̸= c at a double slit, a grating or a crystal is the

superposition of the bending of BSP’s at single matter edges.
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Figure 90: Quantification of the bending trajectories of basic subatomic particles
with v ̸= c (electron) at a metal slit.

16 Interaction of complex BSPs with v = c (pho-

tons) with regenerating and emitted FPs from

BSPs of matter.

16.1 General considerations.

A sequence of BSPs with light speed (photon) is not bent when it interacts with

regenerating or emitted fundamental particles of BSPs of matter. They are absorbed

by the regenerating FPs of BSPs of the matter and

• partly passed to the emitted FPs from the BSPs of matter at the reflection level.

(reflected).

• and partly re-emitted by the BSPs of the matter (refracted).

The concept is shown in Fig. 91.

Fig. 91 shows a piece of matter with its two parallel refraction levels and two BSPs

a and b with their regenerating and emitted rays of FPs.
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Figure 91: Light reflection and refracction

From left to right a photon is shown as a sequence of opposed dHn (dots and crosses)

fields perpendicular to the drawing plane. Each pair of opposed dHn fields is a potential

linear momentum perpendicular to the plain that contains the opposed pair. At the

reflection level part of the energy of each pair of dHn field is reflected and the rest of

the energy is refracted at the refraction level 1. The reflection follows postulate 8 of

interactions between FPs from sec. 2.2 passing part of the energy of pairs of opposed

dHn from regenerating rays of FPs to rays of emitted FPs. The separation between

reflection level and refraction level 1 shown in the figure has only a didactic purpose to

emphasize the interaction between incoming FPs of the light ray and the FPs of the

emitted ray of BSP a.

At the refraction level each dHn pair is absorbed by a BSP of matter transforming

the potential linear momentum in an actually one. The now moving BSP is stopped

after a certain interval because of its bindings with the other BSPs of the matter and

emits the previously absorbed dHn pair with light speed.

The present approach is a emission theory where FPs are emitted by BSPs with

light speed relative to a coordinate system fixed to the BSPs. Light that arrives to

matter with speed c ± u is reflected and refracted at the refraction level 2 with light
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speed. The reduced speed of the light inside matter is due to the time needed for

absorbtion and re-emission when moving from BSP to BSP.

16.2 Splitting of BSPs with v = c.

At Fig. 91 the separation between reflection level and refraction level 1 shows first

the splitting of the light ray followed by the refraction to comply with conservation

of potential linear momentum. An isolated splitting of the light ray is also possible

without the need of a subsequent refraction as the following Fig. 92 shows.

The ray that passes between the two BSP with v = 0 carries two FPs with opposed

angular momenta Jn (dot and cross) which give the potential linear momentum pn.

The two BSPs with v = 0 emit FPs with longitudinal angular momenta Js which are

not paired and are not opposed to give a potential linear momentum.

At point O, where the three rays cross, their angular momenta interact according

postulate 8 resulting the angular momenta J
′
n and J

′′
n . Both types of angular momenta

have an opposed pair giving respectively potential linear momenta p
′
n and p

′
s on the

two rays. Longitudinal angular momenta J
′
s remain at each ray contributing to the

balance of linear momentum and energy.
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Figure 92: Splitting of a BSP with light speed.

Fig. 93 shows the geometric relations for the balance of linear momentum. We

have assumed, that the splitting is symmetric to make calculations easier.
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Fig. 94 shows the splitting of a train of alternated linear momentum pn.
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Figure 94: Splitting of a train of BSP with light speed.

The train of linear momenta p
′
n interfere as shown in Fig. 95.

We have that

dp =
1

8π

√
mp rop rot

∫ ∞

rr

dH (711)

As a BSP with light speed is independent of the BSP that has emitted it, it is

independent of the distance rr. We define that
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∫ ∞

rr

dH =
√
J ν and rot

√
J ν =

√
J ν

ro
(712)

and get for the potential lineal momentum p for each pair of opposed angular

momenta

p =
1

8π

√
mp

√
J ν (713)

with mp the mass of the probe particle. The energy of a train of potential linear

momenta that moves with light speed (photon) is Eph = h ν with h the Planck konstant.

If the train has k links we have that

Eph = h ν = k J ν = k h ν
′

with ν
′
=
ν

k
(714)

16.3 Differences between bending, reflection, refraction and

splitting.

• Bending occurs between BSPs with speeds v ̸= c (with rest mass) which emit and

are regenerated by FPs. The bending is the product of the exchange of quantized

energy between the bending partners and the bending linear momenta between

them are opposed and have equal absolute value.

• Reflection occurs between BSPs with speeds v = c with potential linear momenta

(pair of opposed dHn) which don’t emit and are not regenerated by FPs. Reflec-

tion is always paired with refraction because of momentum conservation, also in

the case of total reflection.

• Refraction occurs between BSPs with v ̸= c and BSPs with v = c. The pairs

of opposed dHn are absorbed by the BSPs with v ̸= c and then re-emitted.

Refraction is always paired with reflection because of momentum conservation,

also in the case of total refraction.

• Splitting occurs between BSPs with v = c. Because of momentum conservation

splitting requires the interaction of three BSPs with v = c.

16.4 Interference schemas for BSPs with v = c.

A BSP with light speed is formed by a pair of equal but opposed angular momenta

which, when absorbed by the regenerating FPs of a probe BSP gives it a linear momen-

tum. The possibility to transform the energy stored in opposed angular momenta to

energy stored in linear momentum is expressed with potential liner momentum. At
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a single BSP with light speed the potential linear momentum can adopt all directions

relative to the moving direction of the BSP. Single BSPs with light speed are called

neutrinos.

A train of BSPs with light speed with alternating opposed potential linear momenta

perpendicular to the moving direction is called photon. Photons interfere giving the

known interference patterns at a target edge, at a single slit and at a double slit.

The following schematic representations show how the interference patterns are

generated based on the concept of splitting of a train of BSPs with light speed.

1) At a free target edge. Fig. 95 shows a free target edge where some rays

pass between the limiting atoms of the edge and rays that pass outside the edge. As

BSPs with light speed are not bend, the rays outside the edge move without change of

direction. The two rays a and b are split according Fig. 92 and Fig. 94. The interference

patterns are generated the same way we know from standard theory. The incoming ray

is split in rays with splitting angle ±η. Interference produced by splitting angles −η is

not visible because of the intensity of outside rays. The distance dA between atoms is

given by

dA =
n λ

sin ηn
(715)

2) At a target with a single slit. Fig. 96 shows the bending and corresponding

interferences at a single slit. The interference pattern observed with a single slit is

simply the superposition of the interference patterns from free edges. To make them

visible certain geometric relations between the dimension of the slit and the distance

to the screen must be observed. The slit is given by the following equation:

b =
∆x

sin ηn
with ∆x = n λ (716)
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Figure 95: Splitting and interference of BSPs
with v = c at a free matter edge.

3) At a target with a double slit.

The interference of BSPs with v = c at a double slit, a grating or a crystal is the

superposition of the two interference cases 1) and 2) previously presentsd.

The distance g between the two slits is given by

g =
n λ

sin η
(717)

Note: As a photon is composed of a train of BSPs with opposed potential linear

momenta, it is possible to explain the interference of a single photon at the double slit,

in that part of the train passes trough one and the other part through the other slit.

The two parts are then split in rays that interfere.
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Figure 96: Interference of BSPs
with v = c at a single slit.
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16.5 Derivation of Snell’s refraction law.

In Fig. 97 the potential linear momentum of each pair of opposed dHn field at each

light ray is shown. The potential liner momentum is given by

p =
1

8π

√
mp dHn (718)

where mp is the mass of the probe BSP.

Because of momentum conservation the linear momenta must have for ϵi = ϵo the

geometric relation shown which give the following equations.

pr = pi
sin(ϵi − ϵ

′
)

sin(ϵi + ϵ′)
po = pi

sin(π − 2ϵi)

sin(ϵi + ϵ′)
(719)

Additionally with the energy conservation pic = prc+ poc
′
we get after some math-

ematics the Snell’s law of refraction.

c
′

c
=

sin ϵ
′

sin ϵi
(720)
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Figure 97: Geometric relations between potential linear momenta
of reflected and refracted rays.
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16.6 Redshift of the energy of a BSP with light speed in the

presence of matter.

Fig. 98 shows a sequence of BSP with light speed with their potential linear momenta

p (photon) before and after the interaction with the ray of regenerating FPs of the

BSPs of matter. When the regenerating rays are approximately perpendicular to the

trajectory of the opposed dHn (dots and crosses) fields of the photon, part of the energy

of the dHn field is absorbed by the regenerating FPs of the ray and carried to the BSPs

of the matter. The photon doesn’t change its direction and loses energy to the BSPs of

the matter shifting its frequency to the red. The inverse process is not possible because

the BSPs of the photon (opposed dHn fields) have no regenerating rays of FPs that

can carry energy from the BSPs of matter and shift the frequency to the violet.
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Figure 98: Loss of energy of a BSP with v = c

The process of loss of energy is according postulate 8 which postulates that pairs of

regenerating FPs with longitudinal angular momenta from a BSP can adopt opposed

pairs of transversal angular momentum from another BSP. As photons have no regen-

erating FPs they can only leave pairs of transversal angular momentum to other BSPs

and lose energy. During the red shift, two adjacent opposed potential linear momenta

of the photon compensate partially by passing part of their opposed linear momenta

to the BSP of matter.

The energy exchanged between a photon and an electron is

Ei =
h c

λi
Eb =

p2b
2 mp

(721)
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The frequency shift of the photon is with Ei = Eo + Eb

∆ν = νi − νo =
1

h
(Ei − Eo) =

Eb
h

z =
∆ν

νi
(722)

where Ei = h c/λi is the energy before the interaction, Eo = h c/λo the energy

after the interaction and Eb the energy carried to the BSP of matter.

Light that comes from far galaxies loses energy to cosmic matter resulting in a red

shift approximately proportional to the distance between galaxy and earth (Big Bang).

Light is not bent by gravitation nor by a bending target, it is reflected and refracted

by a target.

16.6.1 Refraction and red-shift at the sun.

Fig.99 shows two light rays one passing outside the atmosphere of the sun and one

through the atmosphere. The first ray is red shifted due to regenerating FPs of matter

of the sun as explained in sec.16.6. The second ray is refracted in the direction of the

sun surface when crossing the sun atmosphere. Due to the refractions the speed in the

atmosphere is v < c. Red-shift is also possible at the second ray but not shown in the

drawing.

Note: Bending takes place only between BSPs with rest mass.

c
r

c
r

c
r

c
r

Sun

Sun
atmosphere Sun

atmosphere

il io ll>

refraction

red shift
x

cv
rr

<

ng FPRegenerati

)(induction
BSP

Figure 99: Refraction and red-shift at the Sun

200



16.6.2 Cosmic Microwave Background radiation as gravitation noise.

Two explanations are possible:

From Fig. 98 we have learned how a photon passes energy to matter shifting

its frequency to red. The transfer of energy takes place according postulate 8 from

rays that not necessarily hit directly matter. If we put on the place of the matter

the microwave detector of the COBE satellite we see how microwave radiation from

radiating bodies that are not placed directly in front of the detector lenses can reach the

detector. What is measured at the FIRAS (Far-InfraRed Absolute Spectrophotometer),

a spectrophotometer (Spiderweb Bolometer) used to measure the spectrum of the CMB,

is the energy lost by microwave rays that pass in front of the detector lenses. The so

called Cosmic- Background Radiation is not energy that comes from microwave rays

that have their origin in the far space in a small space angle around the detector

axis. As the loss of energy from rays of photons to the microwave detector that don’t

hit directly the detector is very low, the detector must be cooled down to very low

temperatures to detect them.

A more plausible explanation for the CMB radiation is based on gravitation forces.

Gravitation also follows postulate 8, which is the foundation of the induction law.

Nuclei of atoms are composed of electrons and positrons. Atoms are formed by

nuclei and level electrons which move in orbits with quantized energies. When level

electrons pass from a higher to a lower energy level the energy difference is emitted as

gamma radiation of energy ∆E = hω.

At very low temperatures all level electrons are at the lowest possible energy level

and no gamma radiation exists.

Gravitation is independent of the temperature because it has its origin at the atomic

nuclei by reintegrating migrated electrons and positrons to their nuclei. The reintegra-

tion of migrated electrons and positrons to their nuclei generates momenta not only at

electrons and positrons of other nuclei, but also at level electrons of other atoms. The

gravitation momenta on the level electrons move them to a higher energy level, energy

difference that is radiated as gamma signal when the electrons return to their original

energy level.

The detectors of FIRAS, etc. are oriented to the Cosmic Background where no

radiation is generated, nevertheless microwaves are detected. The only possible source

of the measured microwaves at very low temperatures are the microwaves generated

by gravitation between the components of the satellite. It is the gravitation noise that

is detected when no thermal noise is present.
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Part V Gravitation

Deduction of the gravitation as an induction force with a Coulomb and Ampere com-

ponent. The Ampere component explains the flattening of galaxie’s rotation curve.

17 Induction between an accelerated and a static

BSPs.

We assume, that a BSPs is accelerated from v = 0 to a fraction k of the light speed

vmax = k c in the time ∆t and returned then to its original position through an external

force in the time ∆t → ∞. We also assume that the acceleration has the direction of

the probe BSP. According to postulate 8 the induced force on the static probe BSP

is independent of the sing of the accelerated BSP and has always the direction of the

acceleration. See Fig. 101 where BSP b is accelerated in the direction of the nucleus

of neutron 1 and BSP p from neutron 2 is the probe BSP.

17.1 Induction between an accelerated and a probe BSP ex-

pressed as closed path integration over the whole space.

We start with the general dynamic equation (409) for the induced force on a static

probe BSP produced by a BSP with speed v

dFi =
1

c

∮
d̄l

2πR
· d

dt

∫ ∞

rr

¯dHn

∫ ∞

rp

dHsp (723)

and the eq. (394) with n̄ = s̄γ

d

dt

∫ ∞

rr

¯dHn =
1

2

d

dt
[Hn]

ro
rr

sinφ dφ s̄γ − Hn v
ro
r2r

sinφ cosφ dφ s̄γ (724)

+
1

2
Hn

1

rr
sinφ dφ

dro
dt

s̄γ

For v = k c≪ c with k a dimensionless factor (see also sec. 4.6), we have

Hn = v
√
m and

d

dt
[Hn] =

dv

dt

√
m (725)

and

ro =
ℏ c
Eo

and
dro
dt

= 0 (726)
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We now assume in Fig. 54 that rd = 0 and that the moving BSP has a speed v = 0

but is accelerated in the direction of the probe BSP from v = 0 to v = k c in the

time ∆t over the distance ∆x, and then returned to its original position in the time

∆t→ ∞ by an external force. We get

d

dt

∫ ∞

rr

¯dHn =
√
m
k c

∆t

1

2

ro
rr

sinφ dφ n̄ (727)

For the static probe BSP we have

Hsp = c
√
m and

d

dt
[Hsp ] = 0 (728)

and we get ∫ ∞

rp

dHsp =
1

2
c
√
mp

rop
rp

sinφp dφp (729)

We introduce this expressions in the first equation and get

dFi =
k c ro rop

√
m

√
mp

4 ∆t

∮
d̄l

2πR
· sinφ sinφp

rr rp
dφ dφp n̄ (730)

With the following geometric relations already defined in sec.4.2 for the Coulomb

law

R = rr sinφ R = rp sinφp − rr cosφ+ rp cosφp = d (731)

we get

rr rp = d 2 sinφ sinφp
[ sinφ cosφp − sinφp cosφ ]2

(732)

resulting

dFi =
k c ro rop

√
m

√
mp

4 ∆t d 2
sin2(φ− φp) dφ dφp (733)

We get for the total force

Fi =
k c ro rop

√
m

√
mp

4 ∆t d 2

∫ φmax

φmin

∫ φp max

φp min

| sin2(φ− φp)| dφ dφp (734)

where the integration limits are functions of the radii ro and rop and the distance

d. For d ≥
√
r2o + r2op the integration limits are

φmin = arcsin
ro
d

φmax = π − arcsin
rop
d

(735)
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φp min
= arcsin

ro
d

φp max = π − arcsin
rop
d

(736)

For d≫ ro the
∫ ∫

is independent of the distance d and equal

to
∫ ∫

Induction
= 2.4662.

Fi =
k c

√
m

√
mp

4 K d 2

∫ ∫
Induction

with

∫ ∫
Induction

= 2.4662 (737)

We get

Fi = 3.10447 · 10−27 k

d 2
N (738)

If we make Fi equal to the attraction force between an electron and a positron

Fs =
1

4πϵo

q2

d2
we get k = 7.4315 · 10−2 (739)

The maximum speed is thus vmax = k c = 2.22944 · 107 m/s < c.

Note: If we compare k = 7.4315 · 10−2 with a = 8.7743 · 10−2 from sec. 4.2 we see

that they are very close. The difference comes from sec. 4.6 where we have introduced

the equation for the induced force based on the equation for the Coulomb force. We

have eliminated the cross product |s̄1 × s̄2| = sin β from eq. (186) resulting in the

difference between
∫ ∫

Coulomb
and

∫ ∫
Induction

.

17.2 Induction between an accelerated and a probe BSP ex-

pressed as rotor.

We start with the induced force expressed as rotor of the d
′
H̄n field

d
′
F̄in =

1

8 π

√
mp rop rot

d

dt

∫ ∞

rr

d
′
H̄n (740)

We make the same assumptions from sec. 17.1 that rd = 0 and that the moving

BSP has a speed v = 0 but is accelerated in the direction of the probe BSP from v = 0

to v = k
′
c in the time ∆t over the distance ∆x, and then returned to its original

position in the time ∆t→ ∞ by an external force. With the transformation φ = π− θ

we get

d

dt

∫ ∞

rr

d
′
H̄n =

1

4π

√
m
k

′
c

∆t

ro
rr

sin θ n̄ (741)

We build the rotor
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rot
d

dt

∫ ∞

rr

d
′
H̄n =

1

2π

√
m
k

′
c

∆t

ro
r2r

cos θ s̄r (742)

and get the force

d
′
F̄in =

1

16 π2

√
mp

√
m
rop ro

r2r

k
′
c

∆t
cos θ s̄r (743)

For aligned BSPs we have that θ = 0 and with ∆t = K r2o we get

d
′
F̄in|θ=0 =

1

16 π2

√
mp

√
m
k

′
c

K

1

d 2
s̄r (744)

or

d
′
F̄in|θ=0 = 3.1886 · 10−29 k

′

d 2
s̄r [N ] (745)

If we make Fi equal to the attraction force between an electron and a positron

Fs =
1

4πϵo

q2

d2
we get k

′
= 7.2354 (746)

The maximum speed thus is v
′
max = k

′
c = 2.1706 · 109 m/s > c, which is not

realistic, but shows, that the rotor gives a smaller value compared with the exact

space integration of the previous section. The rotor nevertheless can be used as a

more practical calculation instrument if the right proportionality factor is introduced

as follows:

Eq. (740) must be written as

d
′
F̄in =

97.3612

8 π

√
mp rop rot

d

dt

∫ ∞

rr

d
′
H̄n (747)

and eq. (741) as

d

dt

∫ ∞

rr

d
′
H̄n =

1

4π

√
m
vmax
∆t

ro
rr

sin θ n̄ with vmax = 2.22944 · 107 m/s (748)

|d ′
F̄in|θ=0| = dFr = 2.30706 · 10−28 1

r2
[N ] (749)

17.2.1 Fundamental moment for the generation of forces.

The calculations of the variation of the speed ∆v = vmax − v = vmax to generate the

Coulomb force of the previous sections, namely integration over the whole space and
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as a rotor, gave values very close to the light speed.

vmax = 2.22944 · 107 m/s < c < v
′

max = 2.1706 · 109 m/s (750)

Our intention now is to give the force Fr the following form

dFr = dpo νr [N ] with dpo = m vmax (751)

We are free to choose any value for the fundamental moment dpo = m vmax and

take vmax = c. The reason is that it gives a simple relation between dpo and νo =
1

∆ot

as shown in sec. 9.1 where we have deduced that

Ee ∆t = Eo ∆ot = h or m c =
h

c
νo (752)

where h is the Planck constant.

We now define that the force dFr is the product of a fundamental momentum

dpo = m vmax and the frequency νr at which the fundamental moment is generated.

dFr = dpo νr [N ] with dpo = m vmax (753)

and make vmax = c m/s. We get

dpo = m c = 2.73282 · 10−22 and νr = 8.44205 · 10−7 1

r 2
[s−1] (754)

The linear momentum dpo is the momentum generated by the transversal angular

momenta of regenerating FPs when they arrive to the focus, as shown in Fig. 100.

From

dEn = ν |J̄n| dEp =
ν

2πR

∮
J̄n · l̄ dp =

1

c
dEp (755)

with Jn = h and ν = νo = 1/∆ot we get

dp =
νo h

c
= 2.73282 · 10−22 = m c = dpo (756)

a simple relation between between dpo and νo =
1

∆ot
as anticipated.

To get a moment dpo = m c the electron or positron must move with

206



dpo = m c =
m v√
1− v2

c2

→ v =
1√
2
c = 2.12132 · 108 m/s (757)

The fundamental force Fo = dpo νo is generated with νo = 1/∆ot = 1.23725 ·
1020 [s−1] and gives Fo = 2.51271 · 10−3 N .
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The concept is shown at Fig. 100

Linear momentum out of opposed 
angular momenta.
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Figure 100: Linear momentum out of opposed angular momenta.

If we now concentrate on the orbit electron with the Bohr radius ao = 5.29189 ·
10−11 m we get from (754)

νB = 8.44205 · 10−7 1

a 2
o

[s−1] = 3.014576 · 1014 s−1 (758)

and

∆Bt =
1

νB
= 3.31722 · 10−15 s >> ∆ot = 8.0824 · 10−21 s (759)

The distance between two consecutive Fundamental Particles for the Bohr radius

is
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dr = dB = c ∆Bt = 9.951648 · 10−7 m (760)

Note: In the previous analysis we have concentrated on region 5 of the curve Fig.

66 of sec. 10 where the Coulomb law is valid. At the region 2 we must write in (754)

that

νr ∝ r2 (761)

17.3 Induced gravitation force between two complex SPs.

We have defined complex subatomic particles (SPs) like the proton, neutron, etc, as

composed of positive and negative BSPs that are grouped in the zone left to the maxi-

mum of the momentum curve of Fig. 29 (See also lower part of Fig. 101). The neutron

for instance with 919 positrons and 919 electrons, neglecting the binding energy. Ac-

celerating and decelerating BSPs of Fig. 3 don’t mix in the nucleus of complex SPs.

They have different emitting and regenerating fundamental particles with different an-

gular momentums and speeds. They are in a dynamic equilibrium in the nucleus of

the complex SP.

We now show at Fig. 101 the generation of the gravitation force between two neu-

trons. If at neutron 1 a positron or electron migrates outside the zone where β = 0,

opposed momentums dp are induced at the positron or electron and the rest of the

neutron 1. The momentum dpb reintegrates the escaped positron or electron to the

nucleus of the neutron 1 generating the transversal field dHn, whose direction is the

same for the positron or electron. If now during the reintegration process the transver-

sal field dHn is transferred according postulate 8 to the regenerating FPs of neutron

2 with its field dHsp , the positron or electron will stop moving towards the center of

the nucleus of neutron 1, and neutron 2 will now move in the direction of neutron 1

with the momentum dpp = dpb. If to the contrary, during the reintegration process the

transversal field dHn is not transferred to the regenerating FPs of neutron 2 with its

longitudinal field dHsp , then the opposed momentums dpa at the positron or electron

and dpb at the rest of the neutron 1 compensate. Escaped electrons and positrons are

continuously forced to reintegrate to the center of the nucleus of neutron 1. The prob-

ability that the transversal field dHn is transferred to the regenerating FPs of neutron

2 follows the law of the inverse square distance d between the neutrons, resulting the

known gravitation force for distances d≫ rn, where rn is the radius of the neutron.
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Figure 101: Induced gravitation force between two neutrons.

17.4 Transmission of gravitation momentum.

The neutron is composed of n+ = 919 positrons and n− = 919 electrons. Positrons

of the neutron provide the required regenerating FPs to electrons and vice versa. The

fields of positrons and electrons compensate and no external field of FPs exist. The

proton is composed of n+ = 919 positrons and n− = 918 electrons. One positron of the

proton is not compensated by an electron and therefore an external field exists. The

concept is shown in Fig. 102.

For the following figures see conventions introduced for the representation of the

positron and electron in sec. 4.3.

Fig. 103 shows a neutron with one migrated BSP and the corresponding leaking
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Fig. 104 shows the linear momentum dpb generated by a migrated BSP when

reintegrated to the nucleus of neutron 1. Also rays (ve) followed by emitted FPs of the

migrated BSP and rays (vr and v
′
r) followed by regenerating FPs of BSPs of neutron 2

are shown.
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18 The d̄Hn field induced at a point P during rein-

tegration of a migrated BSP to its nucleus.

En electron that has migrated slowly outside the core of a neutron formed by n+ = 919

positrons and n− = 919 electrons will interact with one of the positrons of the core of

the neutron and be reintegrated to the neutron. Because of moment conservation they

will have the same moment. The moment of the positron who moves in the core of the

neutron will pass its moment to the n+ = 919 positrons and now n− = 918 electrons

so that the core will move as a unit.
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Figure 105: Field dH due to reintegration of an electron to its neutron

The d̄Hn fields induced at a point P in space due to the moving electron and neutron

core are:

dHn1 = v1
√
m1 dκ1 dHn2 = v2

√
m2 dκ2 (762)

where the sub-index 1 stands for the electron and 2 for the neutron which now has

a positive charge. The distances r1 and r2 to the point in space are nearly equal so

that r1 = r2 and dκ1 = dκ2. We also have
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p1 = m1 v1 p2 = m2 v2 with p1 = p2 v2 =
m1

m2

v1 (763)

and we get

dHn2 =

√
m1

m2

dHn1 resulting dHn2 = 2.3321 · 10−2 dHn1 (764)

For the analysis of the induced gravitation force and the induced current in an

superconductor only the dHn1 field generated by the reintegrating electron or positron

is relevant. The induced opposed dHn2 field generated by the movement of the neutron

core can be neglected.

19 Newton gravitation force.

To calculate the gravitation force induced by the reintegration of migrated BSPs, we

need to know the number of migrated BSPs in the time ∆t for a neutral body with

mass M .

The equation (737) for the induced gravitation force generated by one reinte-

grated electron or positron is

Fi =
dp

∆t
=

k c
√
m

√
mp

4 K d 2

∫ ∫
Induction

with

∫ ∫
Induction

= 2.4662 (765)

with m the mass of the reintegrating BSP, mp the mass of the resting BSP, k =

7.4315 · 10−2. It is also

∆t = K r2o ro = 3.8590 · 10−13 m and K = 5.4274 · 104 s/m2 (766)

The direction of the force Fi on BSP p of neutron 2 in Fig. 104 is independent of

the sign of the BSPs and is always oriented in de direction of the reintegrating BSP b

of neutron 1.

Fig. 106 shows reintegrating BSPs a and d at Neutron 1 that transmit respectively

opposed momenta pg and pe to neutron 2. Because of the grater distance from neutron

2 of BSP a compared with BSP d, the probability for BSP d to transmit his momentum

is grater than the probability for BSP a. Momenta are quantized and have all equal

absolute value independent if transmitted or not. The result computed over a mass M

gives a net number of transmitted momentum to neutron 2 in the direction of neutron

1, what explains the attraction between neutral masses.
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For two bodies with massesM1 andM2 and where the number of reintegrated BSPs

in the time ∆t is respectively ∆G1 and ∆G2 it must be

Fi ∆G1 ∆G2 = G
M1 M2

d 2
with G = 6.6726 · 10−11 m3

kg s2
(767)

As the direction of the force Fi is the same for reintegrating electrons ∆−
G and

positrons ∆+
G it is

∆G = |∆−
G|+ |∆+

G| (768)

We get that

∆G1 ∆G2 = G
4 K M1 M2

m k c
∫ ∫

Induction

(769)

or

∆G1 ∆G2 = 2.8922 · 1017 M1 M2 = γ2G M1 M2 (770)

The number of migrated BSPs in the time ∆t for a neutral body with mass M is

thus

∆G = γG M with γG = 5.3779 · 108 kg−1 (771)
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Calculation example: The number of migrated BSPs that are reintegrated at

the sun and the earth in the time ∆t are respectively, with M⊙ = 1.9891 · 1030 kg and

M† = 5.9736 · 1024 kg

∆G⊙ = 1.0697 · 1039 and ∆† = 3.2125 · 1033 (772)

The power exchanged between two masses due to gravitation is

PG = Fi c =
Ep
∆t

=
k m c2

4 K d 2
∆G1 ∆G2

∫ ∫
Induktion

(773)

The power exchanged between the sun and the earth is, with d⊙† = 1.49476 ·1011 m

PG = FG c = G
M⊙ M†

d 2
⊙†

c = 1.0646 · 1031 J/s (774)

20 Ampere gravitation force.

In the previous sections we have seen that the induced gravitation force is due to

the reintegration of migrated BSPs in the direction d of the two gravitating bodies

(longitudinal reintegration). When a BSP is reintegrated to a neutron, the two BSPs

of different signs that interact, produce an equivalent current in the direction of the

positive BSP as shown in Fig. 107.
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Figure 107: Resulting current due to reintegration of migrated BSPs

As the numbers of positive and negative BSPs that migrate in one direction at one

neutron are equal, no average current should exists in that direction in the time ∆t. It
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is

∆R = ∆+
R +∆−

R = 0 (775)

We now assume that because of the power exchange (773) between the two neutrons,

a synchronization between the reintegration of BSPs of equal sign in the direction

orthogonal to the axis defined by the two neutrons is generated, resulting in parallel

currents of equal sign that generate an attracting force between the neutrons. The

synchronization is generated by the relative movements between the gravitating bodies

and is zero between static bodies. Thus the total attracting force between the two

neutrons is produced first by the induced (Newton) force and second by the currents

of reintegrating BSPs (Ampere).

FT = FG + FR with FG = G
M1 M2

d2
and FR = R

M1 M2

d
(776)

To derive an equation we start with the following equation (281) derived for the

total force density due to Ampere interaction.

F

∆l
=

b

c ∆ot

r2o
64 m

Im1 Im2

d

∫ γ2max

γ2min

∫ γ1max

γ1min

sin2(γ1 − γ2)√
sin γ1 sin γ2

dγ1 dγ2 (777)

with
∫ ∫

Ampere
= 5.8731.

It is also for v ≪ c

ρx =
Nx

∆x
=

1

2 ro
Im = ρ m v ∆ot = K r2o Im =

m

q
Iq (778)

We have defined a density ρx of BSPs for the current so that one BSP follows

immediately the next without space between them. As we want the force between one

pair of BSPs of the two parallel currents we take ∆l = 2 ro.

For one reintegrating BSP it is ρ = 1. The current generated by one reintegrating

BSP is

Im1 = im = ρ m vm = ρ m k c with vm = k c k = 7.4315 · 10−2 (779)

We get for the force between one transversal reintegrating BSP at the body with

mass M1 and one longitudinal reintegrating BSP at M2 moving parallel with the speed

v2

dFR = 5.8731
b

∆ot

2 r3o
64

ρ2 m k
v2
d

= 2.2086 · 10−50 v2
d

N (780)
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with Im2 = i2 = ρ m v2.

The concept is shown in Fig. 108.
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Figure 108: Ampere gravitation

Note: The sign that takes the current im of the reintegrating BSP at the body

with mass M1 which interacts with the current i2, is a function of the direction of the

magnetic poles of M1. The Ampere gravitation force FR is therefore an attraction or

a repulsion force depending on the relative directions of the magnetic poles of M1 and

the speed v2.

In sec. 19 we have derived the mass density γG of reintegrating BSPs. At Fig. 106

we have seen that half of the longotudinal reintegrating BSPs of a neutron 1 induce

momenta on neutron 2 in one direction while the other half of longitudinal reintegrating

BSPs induce momenta in the opposed direction on neutron 2. In Fig. 108 we see,

that all longitudinal reintegrating BSPs at M2 generate a current component i2 in

the direction of the speed v2. This means that we have to take for the density γA of

reintegrating BSPs for the Ampere gravitation force approximately twice the value of

the density γG of the Newton gravitation force

γA ≈ 2 γG = 2 · 5.3779 · 108 = 1.07558 · 109 kg−1 (781)

resulting for the total Ampere gravitation force between M1 and M2

FR = 5.8731
b

∆ot

2 r3o
64

ρ2 m k v2 γ
2
A

M1 M2

d
= 2.5551 · 10−32 v2

M1 M2

d
N (782)
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where

FR = R
M1 M2

d
with R = 2.5551 · 10−32 v2 = R(v2) (783)

The total gravitation force gives

FT = FG + FR =

[
G

d2
+
R

d

]
M1 M2 (784)

The concept is shown in Fig. 109.
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Figure 109: Gravitation forces at sub-galactic and galactic distances.

20.1 Flattening of galaxies’ rotation curve.

For galactic distances the Ampere gravitation force FR predominates over the induced

gravitation force FG and we can write eq. (784) as

FT ≈ FR =
R

d
M1 M2 (785)

The equation for the centrifugal force of a body with mass M2 is

Fc =M2
v2orb
d

with vorb the tangential speed (786)

For steady state mode the centrifugal force Fc must equal the gravitation force FT .

For our case it is

Fc =M2
v2orb
d

= FT ≈ FR =
R

d
M1 M2 (787)
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We get for the tangential speed

vorb ≈
√
R M1 constant (788)

The tangential speed vorb is independent of the distance d what explains the flat-

tening of galaxies’ rotation curves.

Calculation example

In the following calculation example we assume that the transition distance dgal is

much smaller than the distance between the gravitating bodies and that the Newton

force can be neglected compared with the Ampere force.

For the Sun with v2 = vorb = 220 km/s and M2 =M⊙ = 2 · 1030 kg and a distance

to the core of the Milky Way of d = 25 · 1019 m we get a centrifugal force of

Fc =M2
v2orb
d

= 3.872 · 1020 N (789)

With

R(v2) = 2.5551 · 10−32 v2 = 5.6212 · 10−27 Nm/kg2 (790)

and

Fc ≈ R
M1 M2

d
(791)

we get a Mass for the Milky Way of

M1 = Fc d
1

R M⊙
= 4.3 · 106 M⊙ (792)

and with

FG = FR we get dgal =
G

R
= 1.1870 · 1016 m (793)

justifying our assumption for FT ≈ FR because the distance between the Sun and

the core of the Milky Way is d≫ dgal.

Note: The mass of the Milky Way calculated with the Newton gravitation law

gives M1 ≈ 1.5 · 1012 M⊙ which is huge more than the bright matter and therefore

called dark matter. The mass calculated with the present approach corresponds to the

bright matter and there is no need to introduce virtual masses in space.

For sub-galactic distances the induced force FG is predominant, while for galactic

distances the Ampere force FR predominates, as shown in Fig. 109.

dgal =
G

R
(794)
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Note: The flattening of galaxies’ rotation curve was derived based on the assump-

tion that the gravitation force is composed of an induced component and a component

due to parallel currents generated by reintegrating BSPs and, that for galactic distances

the induced component can be neglected.

20.2 Current induced on a rotating body.

In sec. 20 we have analysed the interactions between reintegrating BSPs of two bodies

that move relative with the speed v2. Now we analyse the case of two bodies where

one of them rotates relative to the other.

The concept is shown in Fig. 110
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Figure 110: Induced current IM and field dHn on a rotating neutral body.

Comparing with Fig.108 all BSPs at the distance d1 move with −v2 and all BSPs

at the distance d2 move with v2. Reintegrating BSPs at M2 that are at the distance

d1 from M1 define the direction of the currents im at M1 because they are closer than

reintegrating BSPs of M2 at the distance d2. The net result is a closed loop of currents

i2 at M2 giving the current IM which generates the transversal field dHn. Please see

also subsection Permanent magnetism at [25.9].
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21 Electromagnetic and Gravitation emissions.

Fig. 111 shows the generation of the electromagnetic emission and the gravitation

emission.

At a) a Subatomic Particle (SP), electron or positron, shows transversal angular

momenta Jn of its Fundamental particles (FPs) when moving with constant moment

p relative to a second SP (not shown). The transversal angular momenta of its FPs

follow the right screw law in moving direction independent of the charge. FPs with

opposed angular momenta are entangled and are fixed to the SP. No FPs are emitted

when moving with constant speed.

When the moving SP approaches a second SP (not in the drawing), the opposed

transversal angular momenta are passed to the second SP via their regenerating FPs

so that the first SP looses moment while the second SPs gains moment.

At b) a oscillating SP is shown with the pairs of emitted FPs with opposed angular

momenta at the closed circles changing ciclically their directions. At far distances from

the SP trains of FPs with opposed angular momenta become independent from the SP

and move with light speed (photons) relative to its source. According to which combi-

nation of opposed entangled FPs become independent we have a train with potentially

transversal momenta p (shown) or potentially longitudinal momenta p (not shown).

At c) a SP is shown that migrates slowly to the right outside the atomic nucleus and

is than reintegrated to the left with high speed to its nucleus . The migration is so slow

that no transversal angular momenta are generated at their FPs. When reintegrated,

FPs with opposed transversal angular momenta become independent and move until

absorbed by regenerating FPs of a second SP (not shown). As the transversal angular

momenta of a moving SP follow the right screw law in moving direction independent

of the charge of the SP, the reintegration will generate always potential longitudinal

momenta p in the direction of the nucleus. The emitted pairs of opposed angular

momenta with potential longitudinal momenta p have all the same direction, and when

passed to a second SP generate the gravitation force.
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Figure 111: Electromagnetic and Gravitation emissions
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22 Quantification of forces between BSPs and CSPs.

In sec. 17.1 we have derived the speed v = k c with which migrated BSP are reinte-

grated generating the Coulomb force and the two components of the gravitation force.

In sec. 9.2.1 we have seen that the momentum generated by one pair of FPs with

opposed angular momenta is

pFP =
2 EFP
c

= 2.20866 · 10−34 kgms−1 (795)

We define now an elementary momentum

pelem = m k c = 2.0309 · 10−23 kgms−1 (796)

The number of pairs of FPs required to generate the momentum pelem in the time

∆ot is

pelem
pFP

= 9.1951 · 1010 (797)

In the following subsections we express all known forces quantized in elementary

linear momenta pelem.

22.1 Quantification of the Coulomb force.

In Sec. 4.2 we have derived the Coulomb force between two BSPs arriving to eq. (202)

that follows

F2 =
a m c r2o
4 ∆ot d 2

∫ ∫
Coulomb

with

∫ ∫
Coulomb

= 2.0887 (798)

We now write the equation as follows

F2 = NC(d)
1

∆ot
pelem = NC(d) νo pelem pelem = m k c a = 8.774 · 10−2 (799)

with

NC(d) =
a r2o

4 k d 2

∫ ∫
Coulomb

= 9.1808 · 10−26 1

d2
(800)

νC(d) = NC(d) νo gives the number of elementary linear momenta pelem during the

time ∆ot resulting in the force F2.

For an inter-atomic distance of d = 10−10 m we get NC = 9.1808 · 10−6 resulting a

frequency of elementary momenta of
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νC(d) = NC(d) νo = 1.1359 · 1015 s−1 for d = 10−10 m (801)

22.2 Quantification of the Ampere force between straight in-

finite parallel conductors.

In Sec. 4.11 we have derived the Ampere force between two parallel conductors arriving

to eq. (281) that follows

F

dl
=

b

c ∆t

r2o
64 m

Im1 Im2

d

∫ ∫
Ampere

with

∫ ∫
Ampere

= 5.8731 (802)

and b = 0.25. We now write the equation in the following form assuming that the

velocity of the electrons is v << c so that ∆t ≈ ∆ot and the currents are Im ≈ ρx m v,

where ρx = Nx/∆x is the linear density of electrons that move with speed v in the

conductors.

F = NA(d, Im1 , Im2 , ∆l) νo pelem pelem = k m c νo =
1

∆ot
(803)

with

NA(d, Im1 , Im2 , ∆l) =
b r2o

64 k m2 c2
Im1 Im2

d

∫ ∫
Ampere

∆l (804)

or

NA(d, Im1 , Im2 , ∆l) = 6.1557 · 1017 Im1 Im2

d
∆l (805)

For a distance of 1m between parallel conductors with a length of ∆l = 1m and

currents of 1A we get NA = 6.1557 · 1017. The frequency of elementary momenta for

this particular case

νA = NA(d, Im1 , Im2 , ∆l) νo = 7.6158 · 1037 s−1 (806)

22.3 Quantification of the induced gravitation force (New-

ton).

From sec. 19 eq. (765) we have that the gravitation force for one aligned reintegrating

BSPs is
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Fi =
k m c

4 K d 2

∫ ∫
Induction

with

∫ ∫
Induction

= 2.4662 (807)

which we can write with ∆ot = K r2o and pelem = k m c as

Fi = Ni νo pelem with Ni =
r2o

4 d 2

∫ ∫
Induction

(808)

Considering that ∆G1 ∆G2 = γ2G M1 M2 we can write for the total force between

two masses M1 and M2

FG = Fi ∆G1 ∆G2 = NG νo pelem with NG = Ni ∆G1 ∆G2 (809)

where NG represents the probability of elementary forces felem = νo pelem in the

time ∆ot = K r2o.

Finally we get

FG = NG(M1,M2, d) νo pelem with NG = 2.6555 · 10−8 M1 M2

d2
(810)

The frequency with which elementary momenta are generated is

νG = NG(M1,M2, d) νo = 3.2856 · 1012 M1 M2

d2
(811)

For the earth with a mass of M⊕ = 5.974 · 1024 kg and the sun with a mass of

M⊙ = 1.9889 · 1030 kg and a distance of d = 147.1 · 109 m we get a frequency of

νG = 1.8041 · 1045 s−1 for aligned reintegrating BSPs.

22.4 Quantification of the gravitation force due to parallel

reintegrating BSPs (Ampere).

From sec. 20 eq. (780) we have for a pair of parallel reintegrating BSPs that

dFR = 5.8731
b

∆ot

2 r3o
64

ρ2 m k
v2
d

= 2.2086 · 10−50 v2
d

N (812)

which we can write as

dFR = N νo pelem with N = 8.7893 · 10−48 v2
d

(813)

where
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pelem = k m c and k = 7.4315 · 10−2 (814)

The total Ampere force between masses M1 and m2 is given with eq. (782)

FR = 2.5551 · 10−32 v2
M1 M2

d
N (815)

We now write the equation in the form

FR = NR(M1,M2, d) νo pelem with NR = 1.01682 · 10−29 v2
M1 M2

d
(816)

The frequency with which pairs of FPs cross in space is

νR = NR(M1,M2, d) νo = 1.25811 · 10−9 v2
M1 M2

d
s−1 (817)

For the earth with a mass of M⊕ = 5.974 · 1024 kg and the sun with a mass of

M⊙ = 1.9889 · 1030 kg and a distance of d = 1.5 · 108 m and a tangential speed of the

earth around the sun of v2 = 30 m/s we get a frequency of νR = 2.9896 · 1039 s−1 for

parallel reintegrating BSPs. The frequency νG for aligned BSPs is nearly 106 times

grater than the frequency for parallel reintegrating BSPs and so the corresponding

forces.

22.5 Quantification of the total gravitation force.

The total gravitation force is given by the sum of the induced force between aligned

reintegrating BSPs and the force between parallel reintegrating BSPs.

FT = FG + FR = [NG(M1,M2, d) + NR(M1,M2, d)] pelem νo (818)

or

FT = FG + FR = pelem νo

[
2.6555 · 10−8

d2
+

1.01682 · 10−29

d
v2

]
M1 M2 (819)

We define the distance dgal as the distance for which FG = FR and get

dgal =
2.6555 · 10−8

1.01682 · 10−29 v2
= 2.6116 · 1021 1

v2
m (820)
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22.6 Transmission speed of elementary momenta between BSPs.

Fig. 112 shows at a) and b) for the Ampere and at c) for the Coulomb and the

Induction laws the emission ve and regeneration vr speeds of the rays of FPs with the

corresponding distribution function dκ drawn for r or h constant and variable emission

angle φ.

Accelerating BSPs emit FPs with infinite speed and are regenerated by FPs with

light speed. Decelerating BSPs emit FPs with light speed and are regenerated by FPs

with infinite speed.

As accelerating BSPs provide the FPs for decelerating BSPs and vice versa only

two combinations of BSPs for the Ampere, the Coulomb and the Induction laws must

be analysed.

At Fig. 112 the distribution function dκ was drawn for each BSP for a constant

distance r to show the contribution of the emitted FPs in the directions of φ and γ

(see also Fig. 107 and Fig. 41).

dκ =
1

2

ro
r2r
drr sinφ dφ and

∫ ∞

rr

dκ =
1

2

ro
rr

sinφ dφ (821)

For the Ampere Law the distribution functions for φ = π/2 are shown for the two

BSPs in b) which is a view from below of a). We see that for φ = π/2 the distribu-

tion faction dκ is independent of γ. The transmission speed vtrans of the elementary

momenta between the two BSPs is a function of the distances h1 and h2 as shown in

b).

• For the Ampere law the elementary momenta dp2 are passed from a accelerating

BSP to a decelerating BSP with the speed vtrans = ∞.

• For the Ampere law the elementary momenta dp2 are passed from a decelerating

BSP to a accelerating BSP with the speed vtrans = c.

For the Coulomb and the Induction laws the distribution functions dκ at the two

BSPs are functions of the distances r1 and r2 and the angle φ.

• For the Coulomb and the Induction laws the elementary momenta dp2 are passed

from a accelerating BSP to a decelerating BSP with the speed vtrans = ∞.

• For the Coulomb and the Induction laws the elementary momenta dp2 are passed

from a decelerating BSP to a accelerating BSP with the speed vtrans = c.

We have seen in sec. 6 that a neutron is composed of 919 electrons and 919 positrons.

The 919 electrons are composed of 459 accelerating, 459 decelerating and 1 acc/dec

electrons. The 919 positrons are composed of 459 accelerating, 459 decelerating and 1
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dec/acc positrons. We see, that at each neutron the required combinations are present

to pass the elementary momenta between neutrons with speed vtrans = ∞ what explains

that gravitation transmits with infinite speed.
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Figure 112: Transmission speeds of elementary momenta dp between BSPs
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23 Types of particles and interactions.

General considerations.

FPs are the energy recipients of all kind of manifestations in physics. The energy is

stored in longitudinal and transversal rotations of FPs, storage that is independent of

any kind of coordinate system. Rotation momentum of FPs is transformed into linear

momentum of BSPs out of pairs of opposed angular momentum of FPs. Interactions

between FPs are described as products between the square roots of their energies.

Types of Particles

• Fundamental Particles (FPs)

– FPs are the energy recipients of all kind of manifestations in physics. The

energy is stored in as rotation, storage that is independent of any kind of

coordinate system.

• Basic Subatomic Particles (BSPs = Elementary Particles)

– BSPs with FPs bound to focal points in space (electron and positron)

– BSPs with FPs independent of focal points in space formed by two FPs with

opposed angular momenta (neutrinos)

• Complex Subatomic Particles (CSPs)

– CSPs with FPs bound to focal points in space (neutrons and protons which

are formed by electrons and positrons)

– CSPs with FPs independent of focal points in space but bound to a se-

quence of FPs with opposed angular momenta (photons which are formed

by neutrinos)

• Transitory Subatomic particles

– Particles with unstable configurations of FPs with short lifetimes (Leptons

and Hadrons except electrons, positrons, neutrinos, neutrons, protons and

photons).

Types of Interactions

Interaction laws between FPs of two BSPs are defined as products between their

dH̄ fields.
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• Coulomb law: The close path integration of the cross product between longi-

tudinal dH̄s fields gives the Coulomb equation.

• Ampere law: The close path integration of the cross product between transver-

sal dH̄n fields gives the Lorentz, Ampere, Bragg and one component of the grav-

itation equations.

• Induction law: The close path integration of the product between the transver-

sal field dH̄n and the absolute value of the longitudinal dH̄s field of a static BSP

gives the Maxwell equations and one component of the gravitation equations.
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Part VI Relativity

Relativity is deduced as exclusively a speed problem with time and space absolut

variables.

24 Relativity.

24.1 Introduction.

Space and time are variables of our physical world that are intrinsically linked together.

Laws that are mathematically described as independent of time, like the Coulomb and

gravitation laws, are the result of repetitive actions of the time variations of linear

momenta.

To arrive to the transformation equations Einstein made abstraction of the physical

interactions that make that light speed is the same in all inertial frames. The result of

the abstraction are transformation rules that show time dilation and length contraction.

The physical interactions omitted by Einstein are:

• photons are emitted with light speed c relative to their source

• photons emitted with c in one frame that moves with the speed v relative to a

second frame, arrive to the second frame with speed c± v.

• photons with speed c± v are reflected with c relative to the reflecting surface

• photons refracted into a medium with n = 1 move with speed c independent of

the speed they had in the first medium with n ̸= 1.

The concept is shown in Fig. 113

The Lorenz transformation applied on speed variables, as shown in the proposed

approach, is formulated with absolute time and space for all frames and takes into

account the physical interactions at measuring instruments that produce the constancy

of the measured light speed in all inertial frames.

24.2 Lorenz transformation based on speed variables.

The general Lorentz Transformation (LT) in orthogonal coordinates is described by

the following equation and conditions for the coefficients [6]:

4∑
i=1

(θi)2 =
4∑
i=1

(θ̄i)2
4∑
i=1

āikā
i
l = δkl

4∑
i=1

āki ā
l
i = δkl (822)
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with

Θ̄i = āikΘ
k + b̄i (823)

The transformation represents a relative displacement b̄i and a rotation of the frames

and conserves the distances ∆Θ between two points in the frames.

Before we introduce the LT based on speed variables we have a look at Einstein’s

formulation of the Lorentz equation with space-time variables as shown in Fig. 114.

x2 + y2 + z2 + (ico t)
2 = x̄2 + ȳ2 + z̄2 + (ico t̄)

2 (824)

K K

v
rtc o tc o

z
z

Figure 114: Transformation frames for space-time variables

For distances between two points eq. (824) writes now

(∆x)2 + (∆y)2 + (∆z)2 + (ico ∆t)
2 = (∆x̄)2 + (∆ȳ)2 + (∆z̄)2 + (ico ∆t̄)

2 (825)

The fact of equal light speed in all inertial frames is basically a speed problem and
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not a space-time problem. Therefor, in the proposed approach, the Lorentz equation

is formulated with speed variables and absolut time and space. Dividing eq. (825)

through the absolute time (∆t)2 and introducing the forth speed vc we have

v2x + v2y + v2z + (ivc)
2 = v̄2x + v̄2y + v̄2z + (iv̄c)

2 (826)

The concept is shown in Fig. 2.

+
v

+

+

+

tFocal poin

+

+

Particle

E

E

H

H

v

ion RegeneratEmission & heoryStandard t

eJ
�

eJ
�

sJ
�

sJ
� nJ

�

nJ
�

Figure 115: Particle as focal point in space

The forth speed vc introduced is the speed of the Fundamental Particles (FPs) that

move radially through a focus in space as shown in Fig. 115.

The FPs store the energy of the subatomic particles as rotations defining longitu-

dinal and transversal angular momenta. The speed vc is independent of the speeds vx,

vy and vz, forming together a four dimensional speed frame.
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Figure 116: Transformation frames for speed variables

For the Lorentz transformation with speed variables Fig. 116 we get the following

transformation rules between the source frame K and the virtual frame
−
K:
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a) v̄x = vx vx = v̄x

b) v̄y = vy vy = v̄y

c) v̄z = (vz − v) γv vz = (v̄z + v) γv

d) v̄c = (vc −
v

vc
vz) γv vc = (v̄c +

v

v̄c
v̄z) γv

with γv = [1− v2/v2c ]
−1/2

24.3 Transformations for momentum and energy of a particle.

For vz = 0 and vc = c, where c is the light speed, we get

a) v̄x = vx b) v̄y = vy

c) v̄z = −v γv d) v̄c = c γv

We see that for vz = 0 the transformed speeds v̄z and v̄c are not linear functions of

the relative speed v because

γv =

(
1− v2

v2c

)−1/2

= 1 +
1

2

v2

v2c
+

1 · 3
2 · 4

(
v2

v2c

)2

+
1 · 3 · 5
2 · 4 · 6

(
v2

v2c

)3

+ · · · (827)

The case vz = 0 is the case of a particle placed at the origin of the frame K. The

momentum and the energy of the particle in the frame K̄ are given by

p̄ = m v̄z = −m vγv Ē = mc v̄c = mc cγv =
√
E2
o + E2

p (828)

Eo = mc2 and Ep = mcv̄z = mc vγv (829)

As the speed vz in the frame K is parallel to the relative speed v between the

frames, the momentum and the energy of a particle moving with v in the frame K

and a relative speed vz between the frames must give the same values. That we obtain

multiplying the transformed speeds v̄i with γvz

γvz =
[
1− v2z/v

2
c

]−1/2
(830)

We get for the general case with vz ̸= 0 the momentum and the energy in the frame

K̄
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p̄ = m v̄zγvz = m (vz − v)γvγvz Ē = mc v̄cγvz = mc (vc −
v

vc
vz)γvγvz (831)

Note: The frame
−
K is a virtual frame because the speeds calculated with the

Lorentz transformation equations for this frame are virtual speeds and not the real

Galilean speeds of the particles, which are v̄rz = vz ± v. The frame
−
K gives the virtual

velocities that allow the calculation of the values of the momentum and energy, which

are not linear functions of the real Galilean speed v̄rz .

For the distances between the frames K and
−
K the Galilean relativity is valid.

∆z̄ = zo ± v ∆t with ∆t̄ = ∆t for all speeds v (832)

If we start counting time when the origin of all frames coincide so that it is

z = z̄ = z∗ = 0 for t = 0 (833)

we get for the different types of measurements

Measurement K
−
K

∗
K

ideal z = zo z̄ = zo ± v t z∗ = zo ± v t

non destructive z = zo z̄ = zo ± v t z∗ ≈ zo ± v t

destructive z = zo z̄ = zo ± v t z∗ = zo ± v tmeas

where tmeas is the time the destructive measurement took place at the instrument

placed in K∗.

As time and space are absolute variables it is

∆t = ∆t̄ = ∆t∗ ∆z = ∆z̄ = ∆z∗ (834)

Note: The Lorentz transformation equations a),b) and c) are independent equa-

tions with the variables vx, vy and vz; there is no cross-talking between them. Not so

equation d) where v̄c is a function of vc and vz. The speed vz is modifying v̄c.

24.4 Transformations for electromagnetic waves at measuring

instruments .

According to the present approach measuring instruments are composed of an inter-

face and the signal comparing part. Interfaces are optical lenses, mirrors or electric

antennas.
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The concept is shown in Fig.117
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Figure 117: Transformation at measuring equipment’s interface

Electromagnetic waves that are emitted with the speed co from its source, arrive to

a relative moving frame of the measuring instrument with speeds different than light

speed, are first absorbed by the atoms of the interface and than emitted with light

speed co to the signal comparing part .

To take account of the behaviour of light in measuring instruments an additional

transformation is necessary.

In Fig 117 the instruments are placed in the frame K∗ which is linked rigidly to the

virtual frame
−
K. Electromagnetic waves from the source frame K move with the real

speed v̄rz = co ± v in the virtual frame
−
K. The real velocity v̄rz can take values that

are bigger than the light speed co.

The links between the frames for an electromagnetic wave that moves with co in

the frame K are:

K
−
K

∗
K

e) λz λ̄ = λz

f) vz = co v̄rz = co ± v v∗z = co

g) fz = co/λz f̄rz = v̄rz/λz

h) f̄z = f̄rz γ f ∗
z = f̄z

i) E = h fz Ē = h f̄z E∗
z = h f ∗

z

e) shows the link between the frames K and
−
K. The wavelengths λz = λ̄z

because there is no length contraction.

f) shows the real Galilean speed v̄rz in frame
−
K.

g) shows the real frequency f̄rz in the frame
−
K.

h) shows the virtual frequency f̄z in the frame
−
K and the link
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to the frequency f ∗ of the frame K∗.

i) shows the equation for the energy of a photon for each frame.

Note: Also for electromagnetic waves the frame
−
K gives the virtual velocity that

allows the calculation of the values of the momentum, energy and frequency, which are

not linear functions of the real speed v̄rz .

For electromagnetic waves we have the following real speeds for the different types

of measurements:

Measurement K
−
K

∗
K Refraction

ideal vz = co v̄rz = co ± v v∗z = co n = 1

non destructive vz = co v̄rz = co ± v v∗z < co n > 1

destructive vz = co v̄rz = co ± v v∗z = 0 n⇒ ∞

with n the optical refraction index n = co/v
∗
z .

24.5 Equations for particles with rest mass m ̸= 0.

Following, equations for physical magnitudes are derived for particles with rest mass

m ̸= 0 that are measured in an inertial frame that moves with constant speed v. For

this case the transformation equations a), b), c) and d) from K to
−
K are used. The

transfomation from
−
K to K∗ is the unit transformation, because of conservations of

momentum and energy between rigid linked frames.

24.5.1 Linear momentum.

To calculate the linear momentum in the virtual frame K̄ of a particle moving in the

source frame K with vz and vx = vy = 0 we use the equation c) of sec 24.2, with

vc = co. The speed vc = co describes the speed of the Fundamental Particles (FP)

emitted continuously by electrons and positrons and which continuously regenerate

them, also when they are in rest in the frame K (vx = vy = vz = 0). From (831) we

define

v̄
′

z = (vz − v)γvzγv (835)

The linear momentum p̄z we get multiplying v̄
′
z with the rest massm of the particle.

p̄z = m v̄
′

z = m (vz − v)γvzγv = p∗z (836)

Because of momentum conservation the momentum we measure in K∗ is equal to

the momentum calculated for
−
K, expressed mathematically p∗z = p̄z.
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Eq. (836) is the same equation as derived with special relativity.

Note: The rest mass is simply a proportionality factor which is not a function of

the speed and is invariant for all frames.

24.5.2 Acceleration.

To calculate the acceleration in the virtual frame
−
K we start with

āz =
dv̄

′
z

dt
with v̄

′

z = v̄z γvz = (vz − v)γvγvz (837)

what gives for vz(t) and γvz(t)

āz =
dv̄

′
z

dt
=
dv̄z
dt
γvz + v̄z

dγvz
dt

=
dvz
dt

γvzγv + (vz − v)γv
d

dt
γvz (838)

From momentum conservation p∗z = p̄z we have that

āz = a∗z (839)

24.5.3 Energy.

To calculate the energy in the virtual frame
−
K for a particle that moves with vz in the

frame K we use the equation d) of sec 24.2, with vc = co. The equation d) is used

because it gives the speeds of the FPs where the energy of the subatomic particles is

stored.

v̄c =
vc −

v

vc
vz√

1− v2/v2c
= (vc −

v

vc
vz)γ = v̄rc γ (840)

To get the energy in the frame K̄ we multiply v̄c with mcγvz . See also eq. (831).

We get

Ē = mc v̄cγvz = mc (vc −
v

vc
vz)γvγvz (841)

Eq. (841) is the same equation as derived with special relativity.

With vz = 0 we get

Ē =
m c2o√
1− v2/c2o

=
√
E2
o + Ē2

p (842)

with

Ēp = m |v̄z| co = |p̄z| co v̄z = vz γvz Eo = m c2o (843)
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To calculate the energy Ēp = m v̄z co we must calculate v̄z as explained in sec.

24.5.1 with vz = 0.

The energy Eo is part of the energy in the frame
−
K and invariant, because if we

make v = 0 we get Eo as the rest energy of the particle in the frame K.

Because of energy conservation between frames without speed difference the energy

E∗ in the frame K∗ is equal to the energy Ē in the frame
−
K.

24.6 Equations for particles with rest mass m = 0.

In this section the equations for electromagnetic waves observed from an inertial frame

that moves with the relative speed v are derived. A comparison between the proposed

approach and the Standard Model is made.

24.6.1 Relativistic Doppler effect.

The speed vc = co describes the speed of the Fundamental Particles (FP) emitted

continuously by electrons and positrons and which continuously regenerate them, also

when they are in rest in frame K (vx = vy = vz = 0). In the case of the photon no

emission and regeneration exist.

The photon can be seen as a particle formed by only two parallel rays of FPs. The

first ray carries FPs with opposed transversal angular momenta of equal orientation

and the second ray carries FPs with transversal angular momenta opposed to the first

ray. At each ray FPs exist only along the length L of the photon.

The concept is shown in Fig. 118
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To calculate the energy of a photon in the virtual frame
−
K that moves with vz = co

in the frame K we use the same equation d) of sec 24.2 used for particles with m ̸= 0,

with vz = co and vc = co. We use equation d) because the energy is stored in FPs. We

get

v̄c =
vc −

v

vc
vz√

1− v2/v2c
= (co − v)γv (844)

Note: As the energy of a photon is a function of the frequency, the energy in the

frame K̄ is not afected by the non linear factor γz.

The momentum of a photon in the frame K is pc = Eph/co = h f/co which we

multiply with v̄c to get the energy of the photon in the frame
−
K. The transformation

of the energy between the frames
−
K and K∗ is E∗ = Ē and we get:

For the measuring instrument moving away from the source

Ē = pc v̄c =
Eph
co

(co − v) γv = Eph

√
co − v√
co + v

= E∗ = h f ∗ (845)

With Eph = h f we get the well known equation for the relativistic Doppler effect

f ∗ = f

√
co − v√
co + v

or
f

f ∗ =

√
1 + v/co√
1− v/co

(846)

and with co = λ f and co = λ∗ f ∗ we get the other well known equation for the

relativistic Doppler effect

λ

λ∗
=

√
1− v/co√
1 + v/co

(847)

Eq. (846) is the same equation as derived with special relativity.

Note: No transversal relativistic Doppler effect exists.

Note: The real frequency f̄rz in the frame
−
K is given by the Galilean speed v̄rz =

co ± v divided by the wavelength λ̄ = λ. The energy of a photon in the frame
−
K is

given by the equation
−
Eph= h f̄z where f̄z = f̄rz γ, with f̄rz = (co ± v)/λz the real

frequency of particles in the frame
−
K.

Note: All information about events in frame K are passed to the frames
−
K and

K∗ exclusively through the electromagnetic fields E and B that come from frame K.

Therefore all transformations between the frames must be described as transformations

of these fields, what is achieved through the invariance of the Maxwell wave equations.

241



24.6.2 Transformation steps for photons from emitter to receiver.

Electromagnetic signals (photons) have to pass an interface at the receiver until a

measurement can be made. The interface is an optical lense, a mirror or an antenna.

The signals undergo two transformations when travelling from the emitter to the re-

ceiver. The first transformation occurs before the interface and the second behind the

interface.

The concept is shown in Fig.119
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Figure 119: Transformation at measuring equipment’s interface

If we assume that the emitters signal in the K frame is

c = λ f (848)

the signal befor the interface of the receiver in the
−
K frame is;

for the measuring instrument moving away from the source

−
f= f

√
c− v√
c+ v

and
−
λ= λ and

−
vz= c− v (849)

At the output of the interface we get the signal in the K∗ frame that is finally

processed by the receiver.

f ∗ = f

√
c− v√
c+ v

and λ∗ = λ

√
c+ v√
c− v

and v∗z = c (850)

At the first transformation the wavelength λ = λ̄ doesn’t transform (absolute space)

and at the second transformation the frequency f̄ = f ∗ (absolute time).
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The speed before the interface c± v is the galilean speed which changes to v∗z = c,

the speed of light, before the processing in the receiver. This explains why always c is

measured in all relative moving frames.

24.7 Relativistic energy of FPs.

A photon is a sequences of pairs of FPs with opposed angular momenta at the distance

λ/2 as shown in Fig. 118. The potential linear moment p of a pair of FPs with

opposed angular momenta is perpendicular to the plane that contains the opposed

angular momenta. The potential linear moment of a pair of FPs with opposed angular

momenta can take every direction in space relative to the moving direction of the pair.

The emission time of photons from isolated atoms is approximately τ = 10−8 s

what gives a length for the wave train of L = c τ = 3 m. The total energy of the

emitted photon is Et = h νt and the wavelength is λt = c/νt. We have defined that

the photon is composed of a train of FPs with alternated angular momenta where the

distance between two consecutive FPs is equal λt/2. The number of FPs that build

the photon is therefore L/(λt/2) and we get for the energy of one FP

EFP =
Et λt
2 L

=
h

2 τ
= 3.313 · 10−26 J = 2.068 · 10−7 eV (851)

and for the angular frequency of the angular momentum h

νFP =
EFP

h
=

1

2 τ
= 5 · 107 s−1 (852)

We can define an equivalent proportionality factor mFP

EFP = mFP c
2 with mFP = 2.29777 · 10−24 kg (853)

The relativistic energy of a FP is

ĒFP = mFP co v̄c =
mFP c

2
o√

1− v2/c2o
=

2.068 · 10−7√
1− v2/c2o

eV (854)

A neutrino can be seen as NFP pairs of FPs with opposed angular momenta that all

contribute to one potential linear momentum.

ENeutrino = NFP EFP = NFP 2.068 · 10−7 eV (855)

Photons can be seen as a sequence of neutrinos with opposed potential linear mo-

menta at the distance λ/2.
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24.8 The proposed approach and the Standard Model.

The proposed approach represents a photon as a package of a sequence of FPs with

opposed angular momenta. Packages are emitted with the speed co relative to its

source. A monochromatic source emitts packages with equal distances λ between FPs.

A package emitted with the speed co, the frequency f and the vawelength λ in the

frame K will move in the virtual frame
−
K with the real speed v̄r = co ± v, will have

the same vawelength λ̄ = λ and a real frequency f̄r = (co ± v)/λ. In the frame K∗

the package is absorbed by the atoms of the measuring instruments and immediately

reemitted with the speed co relative to K
∗. The frequency f ∗ in the frame K∗ is equal

to the virtual frequency f̄ in the frame
−
K which is given by the product of the real

frequency f̄r and the factor γ.

The proposed approach unifies the frames
−
K and K∗ defining that the packages

move from their source in frame K through space with the speed co± v relative to the

frame K∗ of the instruments.

The Standard Model unifies the frames K and
−
K to one frame defining that the

packages (photons) move already from their source through space with the speed co

relative to the frame K∗ where the measuring instruments are located. This gives the

impression that an absolute frame (aether) must exist for the photons to move always

with ligth speed co independent of their sources.

For the Standard Model the length of a package in space (length of the wave train

or coherence length) is l = (co ± v)τ while for the present approach it is l = co τ (τ

is the time needed for traversing the coherence length l), which is independent of the

relative speed v .

Theories normally known as “Emission Theories” analysed by Willem de Sitter

and Daniel Frost Camstock are theories that don’t produce well defined spectroscopic

lines for a star rotating around a neutron star (Astrometric binaries), contrary to what

is observed. In the proposed approach packages with equal distances between their

FPs (equal λ) but with different speeds co ± v from a star rotating around a neutron

star (Astrometric binaries) produce well defined spectroscopic lines in accordance with

experimental observations.

24.9 Conclusions.

The special Lorentz transformation formulated by Einstein is based on space and time

variables and the definition of different times for inertial frames, what leads to trans-

formation rules between frames with time dilation and space contraction.

Based on the proposed approach “Emission & Regeneration” Unified Field Theory,

where electrons and positrons continuously emit and are regenerated by Fundamen-
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tal Particles (FP), the following conclusions about special relativity based on speed

variables were deduced:

• The fact of equal light speed in all inertial frames is basically a speed problem

and not a space and time problem. Time and space are absolute variables and

equal for all frames according to Galilean relativity.

• Electromagnetic waves are emitted with light speed co relative to the frame of

the emitting source.

• Electromagnetic waves that arrive at the atoms of measuring instruments like op-

tical lenses or electric antennae are absorbed and subsequently emitted with light

speed co relative to the measuring instruments, independent of the speed they

have when arriving to the atoms of the measuring instruments. That explains

why always light speed co is measured in the frame of the instruments.

• The transformation rules of special relativity based on space-time variables as done

by Einstein describe the macroscopic results between frames making abstraction

of the physical cause (measuring instruments) of constant light speed in all frames

and require therefore space and time distortions. The transformation rules of

special relativity based on speed variables as done in the proposed approach, take

into consideration the physical cause (measuring instruments) of the constant

light speed in all frames and therefore don’t require space and time distortions.

• All relevant relativistic equations can be deduced with the proposed approach.

The transformation rules have no transversal components, nor for the speeds

neider for the Doppler effect.

• The speed vc of the fourth orthogonal coordinate gives the speed of the FPs emit-

ted continuously by electrons and positrons and which continuously regenerate

them.

• Particles with rest mass are more stable when moving because of the interactions

of their Fundamental Particles (FPs) with the FPs of the masses of real reference

frames as explained in the proposed approach, and not because of time dilation .

The transformation equations based on speed variables are free of time dilation and

length contraction and all the transformation rules already existent for the electric and

magnetic fields, deduced on the base of the invariance of the Maxwell wave equations

are still valid for the proposed approach.

The electric and magnetic fields have to pass two transformations on the way from

the emitter to the receiver. The first transformation is between the relative moving
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frames while the second is the transformation that takes into account that measuring

instruments convert the speed of the arriving electromagnetic waves to the speed of

light co in their frames.

The present work shows how the measuring equipment must be integrated in the

chain of interactions to avoid unnatural conclusions like time dilation and length con-

traction.

Note: General Relativity introduced by Einstein is based on time dilation and

length contraction and is the gravitation theory of the Standard Model. With the

abolition of time and length distortions General Relativity is not more valid and is

replaced by the gravitation theory based on the reintegration of migrated electrons

and positrons to their nuclei as explained in sec. 17 of the proposed approach.
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Part VII Miscellaneous II

25 Miscellaneous.

The strong and weak forces are presented as forces that don’t need to be especially

defined as separate forces.

The possibility of entanglement of BSPs is explained with the strong coupling of

corresponding opposed angular momenta of fundamental particles.

The origin of permanent magnetic fields is explained with the energy flow between

atoms or molecules.

The relation between the elementary bending momentum and the total momentum

between two straight conductors is presented.

The Stern-Gerlach experiment and the spin of the electron are explained based on

Ampere bendin.

The origin of the instability of free positrons is explained.

Energy levels of electrons in atoms are commented.

Radiation of accelerated BSPs is explained.

Coulomb force on a level electron.

Gravitation and background-noise.

Binding energy of BSPs in the nucleons.

25.1 Strong and weak forces.

a) Strong forces are defined in standard physics theory as those forces that bind

quarks into hadrons. They explain why protons coexist in the atomic nucleus even

having the same charge.

The proposed approach explains the coexistence of BSPs with equal signs (electrons

or positrons) in nuclei with the annulation of linear momenta when the distance between

them tends to zero. As nucleons are formed by electrons and positrons, no special strong

force has to be defined to explain this physical phenomenon, thus allowing the existence

of stable complex particles (see Fig. 29). When electrons and positrons join to form

protons or neutrons, the difference between the rest masses is emitted or absorbed as

photons or neutrinos.

We have defined as ∆ni = n+
i − n−

i the difference between the number of positive

and negative BSPs that form the complex particle i.

For the proton we have n+ = 919 and n− = 918 with a binding Energy of EBprot =

−6.9489 · 10−14 J = −0.43371MeV . For the neutron we have n+ = 919 and n− = 919

with a binding Energy of EBneutr = 5.59743 · 10−14 J = 0.34936MeV .
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b) Weak forces are defined in standard physics theory as those forces that bind

heavy leptons and quarks.

According to the proposed approach all BSPs (electrons and positrons) that form

protons and neutrons of an atomic nucleus must move in the zones left of the maximum

of the momentum curve of Fig. 29. BSPs in zone 1 don’t repel neither attract each

other because the linear momenta are zero. For BSPs that migrate outside zone 1 of

the atomic nucleus the linear momenta are not more zero. A polarization with the

remaining BSPs of zone 1 emerges, generating an attracting or repelling force. At

nuclei with low atomic numbers Z all migrated BSPs are reintegrated to the nucleus.

At nuclei with high Z and high numbers of protons and neutrons forming their atomic

nuclei, migrated BSPs at zone 2 of the nuclei are closer to the maximum of the curve

of Fig. 29, and less energy is required to overcome the maximum of the curve allowing

a tunnelling effect explaining radioactivity.

25.2 Light speed.

All fundamental particles emitted by an electron move with light speed relative to a

coordinate system which is fix with the electron. When a level electron changes its

energy level it looses or gains pairs of fundamental particles with opposed angular mo-

menta. The pairs of fundamental particles form chains with alternated potential linear

momenta, resulting in a configuration known as photon (see Fig. 68 c). Photons that

are emitted by a coordinate system that moves with the speed u relative to a second

coordinate system will arrive at the second with the speed c± u. In Fig. 120 one con-

stituent of a photon (opposed dHn) is shown just before being absorbed by an electron

of the second coordinate system transferring its potential linear momentum dpr. The

now moving electron in the second coordinate system will generate opposed transversal

dHn which are irradiated with the speed of light when the electron is stopped after a

distance ∆x because of the bindings to its atom. The Light that we measure is first

absorbed by level electrons of our instrument (glass of the optical system, etc.) and

subsequently emitted with light speed relative to the instrument, what explains why

we always measure light speed. Light that moves through matter (glass, water, etc.) is

constantly absorbed by level electrons and immediately emitted with light speed. The

resulting reduced speed through matter is due to the time spent in the absorbtion and

emission by level electrons.

The concept is shown in Fig. 120.
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Figure 120: Mechanism responsible for constant light speed in all inertial frames

25.3 Life time of muons.

The life time of muons increases with speed according experimental verifications. On

Fig. 121 we will show the mechanism how the mean life of muons increases with speed.

Muons are complex SPs composed of electrons and positrons except for the binding

energy. Electrons or positrons that migrate outside the first region (see sec. 10) will be

reintegrated or expelled. For a muon with v = 0 the tunnel barrier for expelled particles

is given by curve pstat, which flattens with increasing v while the field dHn increases.

For v ̸= 0 electrons and positrons that are accelerated to vexp in the second region are

forced by the dHn field to follow a circular path, thus reducing the probability for the

electron and positron to be expelled.

The comparison of the statistical counts of muons made at different heights involves

no measurements of time nor length with the help of light, and therefore does not

require time nor length corrections according to special relativity.

The concept is shown in Fig. 121.
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Figure 121: Increase of mean life time of muons with speed
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25.4 Reflection and refraction of light.

On sec. 25.2 we have seen, that light adjusts its speed to the light speed c relative to a

coordinate system fix with matter that has absorbed and then emitted it. Light that

is reflected also takes the speed c relative to a coordinate system fix with matter that

has reflected it because of the emission speed of FPs of the BSPs of the matter.

25.5 Entangled BSP.

When we analyzed the balance of energy and rotational momenta in the following

sections

• 2.11 for BSPs that move with constant speed v and

• 4.8 for induced momentums between two static BSPs and

• 4.11.2 for induced momentums between two parallel straight conductors

we have seen that there is a strong coupling between the rotational momenta of

fundamental particles, so that constantly corresponding opposed rotational momenta

are generated and destroyed. We have also seen that the coupling is independent of

the distance between corresponding rotational momenta and that it is defined by

dκ(φ, r, v) = dκ(π − φ, r, v).

There is a configuration that is common for all BSPs, namely rings of transversal

rotational momenta J̄n with sum zero. For BSPs with v ̸= c this rings cannot exist in-

dependently because of the balance conditions for the longitudinal rotational momenta

J̄s. For BSPs with v = c the longitudinal rotational momenta J̄s are zero and therefore

the rings exist as independent configurations in the form of opposed transversal angular

momenta.

When complex particles with v = c (photons) are split, couplings remain between

the two parts of the trains of opposed transversal rotational momenta, couplings that

are independent of the distance between the splitting products. Because of the near

infinite speed of one of the two types of fundamental particles, the splitting products

change their quantum state instantly independent of the distance between them.

25.6 Electron and positron compensation and annihilation.

The representation of electrons and positrons as focal points of rays of FPs, where the

energy is stored in the angular momenta of their FPs, explains the compensation and

annihilation of electrons and positrons as follows: (see also Fig. 7)

Fig. 122 shows the electron positron compensation. When the electron shown at a)

and the positron shown at b) are moved slowly together, they compensate each other
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Figure 122: Electron positron compensation

for the interactions with other external charged particles. At c) the compensation is

shown as the result of the compensation of the longitudinal angular momenta Js of all

their FPs.

Fig. 123 shows the annihilation of an electron with an positron. At the regenerating

FPs of moving electrons or positrons transversal angular momenta Jn are generated as

shown at a) and b. When the electron and positron collide, trains of pairs of FPs with

opposed transversal angular momenta (photons) are expelled with the speed “ c “, as

shown at c). Also individual pairs of FPs with opposed transversal angular momenta

(neutrinos) may be expelled with the speed c. The photons and neutrinos are entities

where the sum of their angular momenta is equal zero and therefore they can become

independent entities of the focal point.

252



e+

c

e-

)a )b )c

nJ +

nJ +

nJ -

nJ -

nJ -

nJ -nJ +

nJ +

nJ +

nJ +

nJ -

nJ -

nJ +

nJ +

nJ -

nJ -

c

v v-

Electron positron annihilation
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25.7 Differences between the Standard and the E & R Models

in Particle Physics.

An important difference between the two models we have in particle physics. The

concept is shown in Fig.124

The SM defines carrier particles X for the interaction between particles A and B

and leads to energy violation during the time ℏ/∆E. The range R of these carrier

particles defines the distance over which the interaction can take place and is given by

R =
ℏ

MX c
(856)

where MX is the mass of the carrier particle with the coupling strength g to the

particles A and B. For electromagnetic interactions the carrier particles are the photons

with MX = 0, the range is R = ∞. For the weak interactions the carrier particles are

the W and Z bosons with masses in the order of 80 − 90 GeV/c2 corresponding to a

range of 2 · 10−3 fm. For the strong and gravitation interactions the carrier particles

are the gluons and gravitons respectively with MX = 0 and range R = ∞.

The E & R model has no carrier. The particles A and B are formed by rays of FPs

that go from ∞ to ∞ through a point in space which is called “Focal Point”. FPs

are continously emited from the Focal Point and FPs continously regenerate the Focal

Point. The regenerating FPs are the FPs emited by other Focal Points in space. The

particles A and B are continously interacting through their FPs, independent of the
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distance between them. There is no difference between subatomic particles and their

FPs which are the constituents of subatomic particles.

FPs have no rest mass and are emitted with the speed c or ∞ relative to the Focal

Point. They have longitudinal and transversal angular momenta and their interaction

is given by the cross product of their angular momenta, cross product which is propor-

tional to sin β. To get the total force between the particles A and B, the integration

over the whole space of all the interactions of their FPs is required.

All interactions are electromagnetic interactions and are generated out of the

combinations of the interactions of the longitudinal and transversal angular momenta

of the FPs.

The strong interaction is explained with the zero electromagnetic force between
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electrons and positrons, which are the constituents of nucleons, for the distance between

A and B tending to zero. No force is required to hold nucleons together.

Weak interactions is an electromagnetic interaction between migrated electrons

or positrons that interact with the remaining electrons and positrons of the nuclei core.

The small electromagnetic force is explained with the small distances between A and

B, force which is proportional to the cross product which is proportional to sin β. See

Fig. 124.

Gravitational interactions are the result of electromagnetic interactions between

electrons and positrons that have migrated slowly out of their nuclei and are then

reintegrated with high speed.

25.8 Mass and charge in the E & R Model

The SM defines mass and charge as different physical characteristics, although it cannot

explain what charge is. It defines particles like the neutrons having mass but no charge.

The E & R Model defines mass and charge as physical characteristics that are

intrinsic to particles and cannot be separated. The charge of an electron and positron

is defined by the sign of the longitudinal angular momentum of emited FPs. Positive

rotation in moving direction corresponds to a positive charge and negative rotation to

a negative charge. Neutrons are composed of equal numbers of electrons and positrons

so that their longitudinal angular momenta of emited FPs compensate, resulting an

effective zero charge.

A mass unit is associated with a charge unit. To the mass 9.1094 · 10−31 kg of a

positron or electron corresponds a charge of ± 1.6022 · 10−19 C.

For complex particles that are formed by more than one electron or positron we

have for the Coulomb force

F = 2.307078 · 10−28 ∆n1 ·∆n2

d2
N (857)

The charge Q of the Coulomb law is replaced by the expression ∆n = n+ − n−

which gives the difference between the constituent numbers of positive and negative

particles (positrons and electrons) that form the complex particle. As the ni are integer

numbers, the Coulomb force is quantified.

The expression ∆n = n+−n− corresponds to the nuclear charge number or atomic

number Z.

∆n = n+ − n− = Z (858)

As examples we have for the proton n+ = 919 and n− = 918 with a binding Energy

of EBprot = −6.9489 · 10−14 J = −0.43371 MeV , and for the neutron n+ = 919 and

255



n− = 919 with a binding Energy of EBneutr = 5.59743 · 10−14 J = 0.34936MeV .

25.9 Permanent magnetism.

Based on the present theory, two possible mechanism of how permanent magnetism is

generated can be imagined:

• An energy flow along a closed chain of static BSPs.

• A current flow along a closed chain of reintegrating BSPs.

An energy flow along a closed chain of static BSPs.

Between two static isolated BSPs that are separated by the distance d, energy is

exchanged because of the flow of fundamental particles. The transversal rotational

momenta J̄
(s)
n generated on the regenerating fundamental particles compensate each

other. The concept is shown in Fig. 125.

wEnergy flo

wEnergy flo
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+

1eJ
r
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1s
J
r

x

Figure 125: Energy flow between two static basic subatomic particles

If the energy flow is between static BSPs that belong to a close chain of atoms

or molecules as shown in Fig. 126, the transversal rotational momenta J̄
(s)
n generated

between two adjacent BSPs of the chain don’t compensate, resulting in a field that

is equal to the magnetic field generated by a current of BSPs in a closed circuit but

without the moving of the BSPs.

The concept is shown in Fig. 126.

The same is valid for a closed chain of positive complex particles (atomic nucleus

or ions).
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A current flow along a closed chain of reintegrating BSPs. The concept is

shown in Fig. 127.

In sec.20 we have described how the reintegration of BSPs to their nuclei generates

a current. If we have a synchronized reintegration of BSPs along a closed chain of

nuclei, a closed current Im is generated that produces a permanent magnetic field. It

is important to remember that BSPs migrate slowly outside their nuclei and are then

reintegrated with high speed.

25.9.1 Induced Magnetic spin in nucleons by an external magnetic field.

Fig. 128 shows a nucleon in an external permanent magnetic field Hn. Electrons and

positrons that have migrated outside the nucleus core are reintegrated with the speed

vr. The Lorentz force generates a current im which generates a magnetic field Hr

opposed to Hn.

īm ∝ H̄n × v̄r (859)

An external applied perturbating electro-magnetic field, usually radio frequency

pulse, absorbe and re-emit electro-magnetic radiation. This is the mechanism used in

nuclear magnetic resonance.
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Figure 128: Induced magnetic spin in nucleons.

Nucleons have a magnetic moment independent of the externally applied magnetic

field Hn because of the mutually interacting magnetic fields of the reintegrating elec-

trons and positrons.

25.9.2 Faraday paradox.

The Faraday paradox or Faraday’s paradox is an experiment in which Michael Faraday’s

law of electromagnetic induction appears to predict an incorrect result. The paradoxes

fall into two classes:

• Faraday’s law appears to predict that there will be zero EMF but there is a

non-zero EMF.

• Faraday’s law appears to predict that there will be a non-zero EMF but there is

a zero EMF.
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The setup consists of a disc and a magnet that are fitted a short distance apart

on the axle, on which they are free to rotate about their own axes of symmetry. An

electrical circuit is formed by connecting sliding contacts: one to the axle of the disc,

the other to its rim. A galvanometer can be inserted in the circuit to measure the

current.

The concept is shown in Fig. 129

According to the present approach permanent magnets are generated by current

loops im that are produced by the reintegration of electrons and positrons to their

nuclei. In a metal that is not magnetized, the reintegration occurs randomly in all

directions at each nucleus and no current loop exists. When magnetized, the reinte-

gration is oriented along a closed loop of nuclei what gives a current IM where each

reintegrating electron and positron remains associated to its nucleus. When the mag-

net rotates, according the direction of rotation the current in the magnet increases or

decreases relative to the measuring equipment.

When the disc rotates, the free electrons at the disc generate a current loop ID

relative to the measuring equipment. So we have two parallel current loops, one at the
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magnet and one at the rotating disc. The parallel currents will attract or repel each

other according the Ampere law. Between differential dl of the loops at points 1 and 2

the force is perpendicular to the surface of the disc and no EMF is induced at the disc

by these currents. Between points 2 and 3 the force has a component in the direction

of the surface of the disc and an EMF is generated.

The following situations are possible:

a) Only the disc rotates. We have two parallel current loops that induce an EMF at

the disc.

b) Only the magnet rotates. We have no current in the disc and no EMF is induced

in the disc.

c) Disc and magnet rotate. We have again case a) and an EMF is induced in the disc.

If one intends to explain the above situations with the help of the Lorentz law which

describes the forces based on the magnetic field, the question arises if the field rotates

or not with the magnet. With the Ampere law no use of a magnetic field is made and

all situations are explained satisfactorily.

25.10 Emission Theory.

The present approach is based on the postulate that light is emitted with light speed

relative to the emission source.

Fig 130 shows how bursts of FPs with opposed angular momenta (photons) emitted

with light speed c travel from frameK to frames K̄ andK∗ with speeds c+u from A and

c−u from B. When they arrive at the measuring instruments at C, the transformations

to the frames K̄ and K∗ take place from where they continue than with the speed of

light c (See also sec. 24.6)

The assumption of our standard model that light moves with light speed c inde-

pendent of the emitting source induces the existence of an absolute reference frame or

ether, but at the same time the model is not compatible with such absolute frames.

The objections made by Willem de Sitter in 1913 about Emission Theories is based

on a representation of light as a continuous wave and not as a sequence of bursts of

equal length L of FPs of opposed angular momenta with equal wave length λ. The

analysis of de Sitter makes no use of the quantized description of nature. Photons with

speeds c+ v and c− v may arrive simultaneously at the measuring equipment showing

the two Doppler spectral lines corresponding to the red and blue shifts in accordance

with Kepler’s laws of motion. No bizarre effects will be seen because photons of equal

length L and λ with speeds c+ v and c− v giving well defined lines corresponding to

the Doppler effects will arrive to the spectral instruments.
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The present approach is based on a modern physical description of nature postu-

lating that

• photons are emitted with light speed c relative to their source

• photons emitted with c in one frame that moves with the speed v relative to a

second frame, arrive to the second frame with speed c± v.

• photons with speed c± v are reflected with c relative to the reflecting surface

• photons refracted into a medium with n = 1 move with speed c independent of

the speed they had in the first medium with n ̸= 1.

The concept is shown in Fig. 131

When the Lorentz transformation is applied with the above postulates, “Relativity

without time delay and length contraction” results as shown in Sec. 24.1.

The frequency change of a photon is produced by:

• the interaction with orbital electrons in the case of optical lenses and electric

antennas of measuring equipment (Doppler-Effect). The change of frequency is

due to the change of the relative speed.
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• the interaction with gravitation fields. The change of frequency is due to the

change of the number NF of FPs per photon (red-shift).

25.11 Redshift of photons in gravitation fields

The emission time of photons from isolated atoms is approximately τ = 10−8 s what

gives a length for the wave train of L = c τ = 3 m. The total energy of the emitted

photon is Et = h νt and the wavelength is λt = c/νt. We have defined that the photon

is composed of a train of FPs with alternated angular momenta where the distance

between two consecutive FPs is equal λt/2. The number of FPs that build the photon

is therefore

NF = 2 L/λt = 2 L
νt
c

(860)

and we get for the energy of one FP

EF =
Et
NF

=
Et λt
2 L

=
h

2 τ
(861)

and for the angular frequency of the angular momentum h

νF =
EF
h

=
1

2 τ
(862)

Calculation example: With τ = 10−8 s we get a length for the wave train of

L = c τ = 3 m what gives EF = 3.313 · 10−26 J = 2.068 · 10−7 eV and νF = 5 · 107 s−1.

The gravitational field and the photons are composed of FPs with transversal an-
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gular momenta which interact when the photon moves through the gravitation field.

We now assume, that the length L of a photon remains constant when moving with

c through a gravitational field. The number NF of FPs contained in the length L of

a photon vary proportional with the intensity g of the gravitation field and the pass

length ∆r through it, according to

∆NF ∝ NF g ∆r (863)

with

g =
Fg
M2

= G
M1

r2
(864)

We get for the relative variations from (860)

∆NF

NF

=
∆νt
νt

= −2
∆λt
λt

(865)

and for the variation of the wavelength

∆λt
λt

∝ g ∆r = G M1
∆r

r2
(866)

Calculation example: In 2020 a group at the University of Tokyo measured the

gravitational redshift of two strontium-87 optical lattice clocks. The measurement took

place at Tokyo Tower where the clocks were separated by approximately ∆r = 450m

and connected by telecom fibers. The gravitational radius r = 6.378 km.

By Ramsey spectroscopy of the strontium-87 optical clock transition (429 THz, 698

nm) the group determined the gravitational redshift between the two optical clocks to

be 21.18 Hz, corresponding to ∆λt
λt

= 5 · 10−14. With

∆λt
λt

= Kλ G M1
∆r

r2
(867)

we get Kλ = 1.15 · 10−17 s2/m2.

25.12 The Newton gravitation field.

The gravitation field is an induction field and has its origin in the reintegration of

migrated electrons/positrons to their atomic nuclei . When reintegrated, rays of FPs

emitted with light speed carry opposed transversal angular momenta Jn, which are

passed to electrons and positrons of an other atomic nuclei generating at them the

gravitation force.
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Fig. 132 shows two neutrons which are composed of electrons and positrons. At neu-

tron 1 we have an electron/positron d which has migrated out of the neutron core and

which is reintegrated to the core when its FPs interact with FPs of an electron/positron

c. The moment pd generated during the reintegration is passed per induction to an

electron/positron of neutron 2, remaining finally the opposed momenta pc and pe which

explains the attraction of the two neutrons. The gravitational moment pd is passed

through the FPs emitted with light speed “c” by the electron/positron d.

If Neutron 1 moves with the speed u relative to neutron 2 the gravitational moment

is passed through FPs that move with the speed c± u.

25.13 Sagnac effect.

In the SM the results of the Sagnac experiment are not compatible with Special Rel-

ativity and are easily explained with non relativistic equations but still assuming that

light moves with light speed independent of its source. As the present approach pos-

tulates that light is emitted with light speed relative to its source, equations for the

Sagnac experiment are derived based on the mentioned postulate.

The concept is shown in Fig. 133

The Postulate also includes the possibility of speeds that are greater than the light

speed “c”.

Fig. 1 of Fig. 133 shows the arrangement with a light source at point “0” and a

detector for the two counter-rotating light rays also at point “0’. Mirrors are placed at

points “1”, “2”, .....”n” of the ring. The tangential speed of the rotating arrangement

is “v”.
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Figure 133: Sagnac experiment

Points “0” and “1” are placed in the parallel planes “a” and “b”. For the time a

photon of the length L and wavelength λ takes to pass from plane “a” to plane “b” the

relative speed between them of vr = v(1−cosφ) can be assumed constant. If we imagin

that plane “a“ moves relative to plane “b” then, according to the emission theory, the

speed of the ray that leaves “a” in the direction of “ b “ has the speed vbi = c− vr as

shown in Fig. 2 of Fig. 133.

Also according to the emission theory the output wavelength λao at “a” must be

equal to the input wavelength λbi . We get for the frequancies ν

λbi =
c− vr
νbi

= λao → νbi =
c− vr
λao

(868)

The frequencies at the input and output of plane “b” must be equal
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νbi =
c− vr
λao

= νbo =
c

λbo
→ λbo =

c

c− vr
λao (869)

Writing the last equation with the nomenclature used for the points “0” and “1”

we get

λ1o =
c

c− vr
λ0o (870)

and for the points “1” and “2” we get

λ2o =
c

c− vr
λ1o =

(
c

c− vr

)2

λ0o (871)

Generalising for “n” we get for the ray in counter clock direction

λno =

(
c

c− vr

)n

λ0o =
1

(1− vr/c)n
λ0o (872)

and for the ray in clock direction

λ
′

no
=

(
c

c+ vr

)n

λ0o =
1

(1 + vr/c)n
λ0o (873)

With

(1± vr/c)
−n = 1∓ n(vr/c) +

n(n+ 1)

2!
(vr/c)

2 ∓ ...... for |vr/c| < 1 (874)

neglecting all non linear terms we get for the wavelength

λdetect = 1 + n(vr/c)λ0o λ
′

detect = 1− n(vr/c)λ0o (875)

and for the difference

∆λdetect = λdetect − λ
′

detect = 2 n(vr/c)λ0o (876)

With R the radius of the ring we have that Ω = v/R and with vr = v(1− cosφ) we

get

∆λdetect = 2 n
R(1− cosφ)λ0o

c
Ω (877)

For n >> 1 and with l the length of the arc on the ring between two consecutive

mirrors, we can write that 2π R m ≈ n l with m the number of windings of the fibre

coil. We also have that cosφ ≈ 1− φ2/2 and that φ = l/R. We get
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∆λdetect = 2 π m
l

c
λ0o Ω (878)

The wavelength difference between the clock and anticlockwise waves is proportional

to the angular speed Ω of the arrangement.

The interference of two sinusoidal waves with nearly the same frequencies ν and

wavelengths λ is given with

F (r, t) = 2 cos

[
2π

(
r

λmod
− ∆ν t

)]
sin

[
2π

( r
λ

− ν t
)]

λmod ≈
λ2

∆λ
(879)

For our case it is ∆ν = 0 and ∆λ = ∆λdetect and we get

F (r, t) = 2 cos

[
4π2 m

l

λ0 c
r Ω

]
sin

[
2π

(
r

λ0
− ν0 t

)]
(880)

For a given arrangement the argument of the sinus wave varies with r for a given

Ω following a cosinus function.

For the intensity of the interference of two light waves with equal frequencies but

differing phases we have

I(r) = I1(r) + I2(r) + 2
√
I1(r) I2(r) cos[φ1(r)− φ2(r)] (881)

The phases are in our case

φ1(r) = 2π
r

λ20
∆λdetect φ2(r) = − 2π

r

λ20
∆λdetect (882)

The intensity of the interference fringes are given with

I(r) = I1(r) + I2(r) + 2
√
I1(r) I2(r) cos

[
4π2 m

l

λ0 c
r Ω

]
(883)

The fringes of the intensity vary with r for a given Ω following a cosinus function .

We have derived the interference patterns for the sagnac arrangement based on the

emission postulate that light is emitted with light speed c relative to its source and that

light is refracted or reflected with light speed independent of the input speed. There

is no incompatibility with “SR without time delay and length contraction”.

25.14 Precession of a gyroscope due to the Ampere gravita-

tion force.

To derive the precession of a gyroscope in the presence of a massive body we start with

equation (281) derived for the total force density due to Ampere interaction.
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F

∆l
=

b

c ∆ot

r2o
64 m

Im1 Im2

d

∫ γ2max

γ2min

∫ γ1max

γ1min

sin2(γ1 − γ2)√
sin γ1 sin γ2

dγ1 dγ2 (884)

with
∫ ∫

Ampere
= 5.8731.

It is also for v ≪ c

ρx =
Nx

∆x
=

1

2 ro
Im = ρ m v ∆ot = K r2o Im =

m

q
Iq (885)

We have defined a density ρx of BSPs for the current so that one BSP follows

immediately the next without space between them. As we want the force between one

pair of BSPs of the two parallel currents we take ∆l = 2 ro.

The concept is shown in Fig. 134
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Figure 134: Gyroscopic precession.

For one reintegrating BSP it is ρ = 1. The current generated by one reintegrating

BSP is

im = ρ m vm = ρ m k c with vm = k c k = 7.4315 · 10−2 (886)

The currents at the rotating gyroscope that are parallel to the current im of M1 are

iω = ± ρ m vω with vω = ω R2 (887)
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For the two opposed forces that give the momentum at the gyroscope and which

generate the precession we get

Fω1 ∝ +
vm vω
d−Rω

Fω2 ∝ − vm vω
d+Rω

(888)

From eq. (884) with v1 = vm = k c we get for a pair of moving BSPs

dFR = 5.8731
b

c ∆ot

2 r3o
64

ρ2 m
v1 v2
d

N (889)

and d >> R2 we get the total force

FR = 5.8731
b

c ∆ot

2 r3o
64

ρ2 m vm vω γ
2
A

M1 M2

d
N (890)

FR = 2.551 · 10−32 vω
M1 M2

d
N (891)

with M1 and M2 the masses of the bodies.

Note: For distances d between gravitating masses smaller than dgal the precession

due to the Ampere force is neglect able compared with the precession due to the Newton

gravitation force.

25.15 Thirring-Lense-Effect.

The Thirring-Lense-Effect is an effect that is based on the induction law and on the

Doppler effect.

In sec. 15.4 about induction bending the following equation was deduced for the

force induced on a probe BSP by a BSP moving with speed v.

The concept is shown in Fig. 135

d
′
F̄in =

1

8 π

√
mp rop rot C̄

′

n (892)

with

rot C̄
′

n =
1

2π

√
m v2

ro
r 3
r

[
2 cos2 θ − sin2 θ

]
ēr + 0 · ēγ (893)

1

2π

√
m v2

ro
r3r

sin θ cos θ ēθ

For the analysis of the dragging produced by a rotating mass on a probe mass

placed in the equatorial plane, the components of the induced force in the direction ēr

and the direction ēθ are required.

The concept is shown in Fig. 136
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Figure 135: Force induced on a BSP at a bending edge
by a BSP moving with speed v.

d
′
Fin ēr =

1

16 π2
m v2

r2o
r 3
r

[
2 cos2 θ − sin2 θ

]
ēr (894)

d
′′
Fin ēθ =

1

16 π2
m v2

r2o
r 3
r

sin θ cos θ ēθ (895)
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Figure 136: Plotting of the trigonometric relation for the analysis of Dragging.

For equal speed v and distance rr the components of the forces in the direction of

the speed v are equal but opposed for the angles θ and 2π − θ. This means that two

BSPs located at θ and 2π− θ induce on the probe BSP forces in the direction of v that

compensate each other.

Fig. 137 shows two BSPs from the surface of the earth that moves with the speed v

relative to a probe BSPp located at the distance d. Each moving BSP emittes rays of

FPs with light speed c relative to the BSP, with a constant interval λ between them.

The speed of the FPs relative to a probe BSPp located at the ray is

c+ v cos θ = λ ν (896)
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Figure 137: Dragging due to Doppler effect.

FPs located at the proximity of the probe BSPp have a higher probability to con-

tribute to the generation of the force on the probe BSPP . The angle θ = arcsin(d/r)

of the probe BSPp is therefore used to calculate the force.

For the two BSPs located at the angles θ1 = θ and θ2 = 2π−θ we get the frequencies
of FPs at the probe BSPP

ν1 =
c+ v cos θ1

λ
ν2 =

c+ v cos θ2
λ

νo =
c

λ
(897)

With eqs. (894) and (895) we get for the components of the forces in the direction

of the speed v taking into consideration the Doppler effect

d
′
F̄v =

ν

νo
d

′
Fin cos θ ēr θ = arcsin(d/r) (898)

d
′′
F̄v =

ν

νo
d

′′
Fin sin θ ēθ θ = arcsin(d/r) (899)

The dragging forces in the direction of the speed v on the probe BSPp are

d
′
F̄drag = (d

′
F̄v1 − d

′
F̄v2) =

ν1 − ν2
νo

d
′
F̄in cos θ er (900)

d
′′
F̄drag = (d

′′
F̄v1 − d

′′
F̄v2) =

ν1 − ν2
νo

d
′′
F̄in sin θ eθ (901)

The total dragging force is
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F̄drag =
2

π

∫ π/2

θ=0

(d
′
F̄drag + d

′′
F̄drag) dθ (902)

25.16 Atomic clocks and gravitation.

Oscillations of mechanical instruments like a pendulum have been used in the past to

define time unit of second. Big efforts were made to minimise the influence of factors like

temperature, vibrations, humidity, gravitation, etc. on the precision. Modern clocks

make use of the quantized change of states of atoms which takes place at a much higher

frequency leading to better precisions. When comparing the precision of clocks it is

very important to compare them under the same conditions of temperature, vibrations,

humidity, gravitation, etc. If this is not possible, corrections for each deviation must be

made. The origin of the variation of the precision of atomic clocks due to gravitation

is unknown and can be attributed to changes in the energy levels of the atoms itself or

to changes in the frequencies of photons after emission.

The intention of the present section is to show a possible mechanism based on the

approach that gravitation is generated by the reintegration of BSP to their nuclei.

According to the approach, the energies of level electrons are given by stable dynamic

configurations of BSPs in nuclei, which change for each atom and its ions. The number

of regenerating FPs with opposed angular momenta that arrive to a nucleus is a function

of the distance to the other gravitating nucleus. They influence the stable dynamic

configuration of BSPs in the nucleus changing the energy of level electrons.

The gravitation components are due to:

• Reintegration of BSPs in the direction of the distance between the gravitating

bodies (induction, Newton).

FG = G
M1 M2

r2
(903)

• Reintegration of BSPs perpendicular to the distance between the gravitating

bodies (Ampere).

FR = ± R(v)
M1 M2

r
with R(v) = 2.551 · 10−32 v (904)

25.16.1 Hafele-Keating Experiment.

We assume that the atomic transition frequencies of the atoms used in atomic clocks

change proportional to the gravitation force and so the gains and losses expressed in ns.
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Each Caesium atom C133
s of an atomic clock changes its frequency with the gravitation

force.

The following measured data were obtained during the Hafele-Keating Experiment:

The concept is shown on Fig. 138.
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Figure 138: Influence of gravitation on clocks frequency.

a) Flying eastwards a total loss of ∆tE = −59 ns was measured during a flight of 41.2

hours at a hight of hE = 8.900 m and a speed of v = 950 km/h relative to the

earth surface.

b) Flying westwards a total gain of ∆tW = 273 ns was measured during a flight of

48.6 hours at a hight of hW = 9.400 m and a speed of v = 950 km/h relative to

the earth surface.

The gain or loss was measured relative to an equivalent atomic clock based on the

earth.

At Fig. 138 we have the earth with mass M1 and the mass M2 of an Caesium atom

C133
s moving with the speed v east or westwards relative to the surface of the earth at

an altitude h. The current IM due to the interaction of reintegrating BSPs of the earth

and the sun has the same direction as the rotation ω of the earth on its axis relative

to the sun (see sec.20.2).

The results of the Hafele-Keating Experiment are better expressed in ns loss or

gain per day.
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Eastwards the plane was flying during 41, 2 h which is equivalent to 1, 716 days and

which gives a total loss eastwards of ∆tE = −59/1.716 = −34, 38 ns/day.

Westwards the plane was flying during 48, 6 h which is equivalent to 2, 025 days

and which gives a total loss westwards of ∆tW = 273/2, 025 = 134, 81 ns/day.

We get for the losses and gains in ns/day

∆tE = −34, 38 ns/day and ∆tW = 134, 81 ns/day (905)

The total gain or loss eastwards and westwards is

∆tE = ∆tEG + ∆tER and ∆tW = ∆tWG + ∆tWR (906)

The proportionality factors are not the same for the Newton and Ampere gravitation

forces because of the different generation mechanism of the gravitation forces.

The proportionality factors are defined as

KG =
∆tG
∆FG

and KR =
∆tR
∆FR

(907)

where ∆tG are the ns/day due to the Newton gravitation and ∆tR are the ns/day

due to the Ampere gravitation.

The difference between the Newton gravitation forces between the distances d1 and

d2 from the centre of the earth is given by

∆FG = FG2 − FG1 = G M1 M2

[
1

d 2
2

− 1

d 2
1

]
where d2 < d1 (908)

The difference between the Ampere gravitation forces of a body moving with vtot

at the hight d1 and d2 from the centre of the earth is given by

∆FR = R(vtot)M1 M2

[
1

d2
− 1

d1

]
where d2 < d1 (909)

where vtot is a velocity still to be deduced.

——————————————————————————–

As the Hafele-Keating experiment doesn’t give measured values of ∆tG, we calcu-

late the proportionality factor KG with measured values of an experiment made by

Briatore and Leschiutto in 1976. The experiment concentrates exclusively on the

influence of the Newton gravitation on the frequency of clocks. The measured data

are:

a) Turin h2 = 250 m and Plateau Rosa h1 = 3.500 m

b) ∆tG = 33, 8− 36, 5 ns/day
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For the calculation of ∆FG we use

a) The mass of C133
s with M2 = 2, 2061 · 10−25 kg

b) The mass of the earth M1 = 5, 972 · 1024 kg

c) For Plateau Rosa d1 = R⊕ + h1 = 6.378, 0 km+ 3, 5 km = 6.381, 5 km

d) For Turin d2 = R⊕ + h2 = 6.378, 0 km+ 0, 25 km = 6.378, 25 km

We get ∆FG = 2, 2201 · 10−27 N and for the proportionality factor

KG =
∆tG
∆FG

=
33, 8

2, 2201 · 10−27
= 1, 5362 · 1028 ns

N day
(910)

——————————————————————————–

Now we can calculate for the Hafele-Keating Experiment the clock variations that

correspond to the Newton gravitation for the east flight with dE2 = 8, 9 km and the

west flight with dW2 = 9, 4 km. We get

∆tEG = 92, 45
ns

day
and ∆tWG = 97, 63

ns

day
(911)

With

∆tE = ∆tEG + ∆tER and ∆tW = ∆tWG + ∆tWR (912)

we get

∆tER = −126, 83 and ∆tWR = 37, 18 (913)

With

∆tR = KR R(vtot)M1 M2

[
1

d2
− 1

d1

]
R(vtot) = 2.551 · 10−32 vtot (914)

we get with vtot = vE in the east direction and vtot = vW in the west direction

∆tER
∆tWR

= − vE
vW

[
1

dE2
− 1

dE1

]
/

[
1

dW2
− 1

dW1

]
(915)

and

∆tER
∆tWR

= − 0, 9468
vE
vW

or
vE
vW

= k = 3, 6029 (916)

We define that

vE = vS + v and vw = vS − v (917)
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where v is the velocity of the plane relative to the surface of the earth and vS a

velocity still to be determined. We get that

vS =
k + 1

k − 1
v = 1, 7683 v (918)

If we assume that the velocity of the commercial plane used was v = 750 km/h we

get for vS = 1.326 km/h or vS = 368 m/s.

The speed of the surface of the earth at the equator in a frame with centre at the

sun and the earth placed at an axis of the frame is vcenter = 463 m/s, which is not far

from vS = 368 m/s. The difference could come from the not very reliable data of the

Hafele-Keating experiment.

The conclusion is, that the speed vS = 368 m/s calculated on the basis of the

variations of the frequencies of atomic clocks due to the influences of the Newton and

Ampere gravitation forces based on the mass of the C133
s atom, is not far from the

speed vcenter = 463 m/s of the surface of the earth at the equator for a frame placed at

the centre of the earth. This can be seen as a confirmation of the proposed approach

for the gravitation mechanism as the result of the reintegration of migrated electrons

and positrons to their nuclei.

Finally we calculate also the proportionality factor KR for the Ampere gravitation.

KR =
∆tR
∆FR

∣∣E =
∆tR
∆FR

∣∣W (919)

∆FR = R(vtot)M1 M2

[
1

d2
− 1

d1

]
where d2 < d1 (920)

with vtot = vE for the east direction and vtot = vW for the west direction. We get

KR =
∆tR
∆FR

∣∣E =
∆tR
∆FR

∣∣W = 2, 9965 · 1040 ns

N day
(921)

For KG we had

KG =
∆tG
∆FG

=
33, 8

2, 2201 · 10−27
= 1, 5362 · 1028 ns

N day
(922)

Now we calculate the current IM generated by the speed vS of BSPs. From sec.20

we have with vS that iS = ρx m vS and for the earth we get IM = iS γA M⊕.

We defined a density ρx of BSPs for the current IM so that one BSP follows imme-

diately the next without space between them and get
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ρx =
Nx

∆x
=

1

2 ro
with ro = 3, 8590 · 10−13 m (923)

With ρx = 1, 2957 · 1012 m−1, m = 9, 1094 · 10−31 kg, vS = 368 m/s, γA =

1, 07558 · 109 kg−1, and M⊕ = 5, 972 · 1024 kg we get for the current IM at the equator

that generates the transversal field dHn of the earth.

IM = ρx m vS γA M⊕ = 2, 7900 · 1018 kg/s (924)

25.17 Instability of positive BSP.

In sec. 6 we have assumed that bright matter is composed of accelerating and deceler-

ating BSPs that regenerate each other. Positive accelerating with negative decelerating

BSPs and positive decelerating with negative accelerating BSPs form two independent

groups of BSPs.

The condition for BSPs to become level BSPs is that they have BSPs in the nucleus

that provide them with regenerating FPs instantaneously and without fluctuations.

Fig. 36 shows a negative decelerating level BSP and a positive accelerating nuclei

BSP.

Level electrons move constantly while electrons and positrons that constitute the

nuclei are confined in a small volume with a bigger inertia and provide the FPs required

by the level electrons. Emitted FPs from level electrons are fully used to regenerate

the corresponding positrons in the nucleus. In such an environment a free positron

has not a stable regenerating source of FPs and transforms to photons and neutrinos,

which don’t need regeneration.

25.18 Energy levels of electrons in atoms.

To analyze qualitatively the origin of the energy levels for electrons in atoms we take

a hydrogen atom which has in his nucleus 919 positive BSPs and 918 negative BSPs.

These BSPs in the nucleus are in a dynamic balance and their emitted fundamental

particles meet with the fundamental particles of an external level-electron. The prob-

ability that the emitted fundamental particles of a BSP in the nucleus meet with the

regenerating fundamental particles of a level-electron depends on the position the BSP

has relatively to the other BSP in the nucleus. This relative position varies constantly

and is influenced by the external level-electron.
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If we now take an atom with more than one proton, the first level-electron will

influence the distribution of the BSPs in the atomic nucleus to get the maximum

binding force. Each following level-electron will find a less favourable distribution of

the BSPs in the atomic nucleus and thus have a weaker binding force than the previous

one.

The external electrons are therefore coupled to the atomic nucleus by different

binding forces and have different energy levels. Because of the quantified numbers

of BSPs in the atomic nucleus the energy levels of the external electrons are also

quantified.

25.19 Radiation of accelerated BSPs.

We have seen, that BSPs that move with constant velocity v emit and are regenerated

constantly by FPs. At the time to = 0 a BSP is regenerated by FPs that have interacted

with FPs that were emited during the time −∞ < t < 0. FPs emitted by the BSP

in the past, interact with regenerating FPs that meet the same BSP at to = 0, if the

BSP moves with constant speed. If the constant movement of the BSP is perturbated

(acceleration), part of the regenerating FPs miss the BSP and are irradite in space.

In the case of a level electron that is constantly accelerated in radial direction, the

regenerating FPs that miss the electron are not irradiated into space, but absorbed

by the regenerating FPs of a BSP of the nucleus that is very close. The BSP of the

nucleus is accelerated generating transversal angular momenta on its regenerating FPs

that are absorbed by the level electron. The energy, that in the case of an accelerated

free electron is irradiated into space, is in the case of the radially accelerated level

electron returned to the level electron via the atomic nucleus.

25.20 Coulomb force on a level electron.

For increasing speed of a BSP, the regenerating longitudinal field dH̄s of the BSP

decreases while the transversal regenerating field dH̄n increases. With decreasing lon-

gitudinal field dH̄s the Coulomb force to an other BSP decreases.

If we imagin an electron with an elliptic orbit around the nucleus, moving from the

aphelion to the perihelion the speed increases, decreasing the Coulomb force. When the

electron is moving from the perihelon to aphelion the speed decreases and the Coulomb

force increases.

25.21 Binding energy of BSPs in the nucleons.

The binding energy is defined as
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EB = (n+ + n−) me c
2 −mnucleon c

2 (925)

with n+ the number of positive and n− the number of negative BSP that form the

nucleon. me and mnucleon are the masses of the electron and the nucleon.

For the proton we have n+ = 919 and n− = 918 with a binding Energy of EBprot =

6.9489 · 10−14 J = 0.43371MeV .

For the neutron we have n+ = 919 and n− = 919 with a binding Energy of EBneutr =

−5.59743 · 10−14 J = −0.34936MeV .

Stable complex particles have positive binding energies, meaning that the nucleon

has less energy than the sum of the rest energies of its component BSPs.

26 Characteristics of a good theory.

The present work is not only limited to show the pragmatic approach of SR and GR

by Einstein and its consequences, it presents also an alternative theory where the

interactions omitted by Einstein are considered. The question that arises is how to

decide for one of these theories .

The primordial objective of a physical theory or a scientific model is to allow cal-

culations that match with experimental data obtained with measurements. A second

objective is to allow theoretical predictions that still must be corroborated through

experimental data.

A good theory is a theory that

• describes mathematically the biggest number of physical interactions based on

the fewest postulates.

• has mathematical descriptions that give calculated data that best match experi-

mental data.

• needs the less number of fictious entities (particle wave, gluons, gravitons, dark

matter, dark energy, time dilation, length contraction, Higgs particle, etc.)

• needs the less number of helpmates (duality principle, equivalent principle, un-

certainty principle, violation of energy conservation (Feynman), etc.)

• is consistent with the less number of paradoxes and contradictions.

• has the biggest potential to predict new interactions and particles.

280



26.1 Impediments for scientific progress.

26.1.1 Experimentally proven.

A theory like our Standard Model was improved over time to match with experimental

data introducing fictious entities (particle wave, gluons, gravitons, dark matter, dark

energy, time dilation, length contraction, Higgs particle, Quarks, Axions, etc.) and

helpmates (duality principle, equivalent principle, uncertainty principle, violation of

energy conservation, etc.) taking care that the theory is as consistent and free of

paradoxes as possible. The concept is shown in Fig. 139. These improvements were

integrated to the existing model trying to modify it as less as possible what led, with the

time, to a model that resembles a monumental patchwork. To return to a mathematical

consistent theory without paradoxes (contradictions) a completely new approach is

required that starts from the basic picture we have from a particle. “E & R” UFT is

such an approach representing particles as focal points in space of rays of FPs. This

representation contains from the start the possibility to describe interactions between

particles through their FPs, interactions that the SM with its particle representation

attempts to explain with fictious entities.
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Detection of experimental data
that don´t fit with the current SM

Definition of fictious entities based on 
the experimental data that don´t fit.

Making the SM consistent with new 
fictious entities as good as possible

Inventing justifications for remaining 
contradictions

Declaring fictitious entities and 
contradictions as the new standard

Glorifying and idolizing the fictious
 entities and their creators 

Detection of additional experimental data that 
can be explained with the fictious entities

Prove that fictious entities really exist

Fallacy used to conclude that the existence of 
fictitious entities is experimentally proven
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Figure 139: Fallacy used to conclude that fictious entities really exist
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Fig. 139 is an organigram where the main steps of the integration of fictious entities

to the SM are shown. All experiments where the previously defined fictious entities

are indirectly detected (point 7. of Fig. 139) are not a confirmation of the existence of

the fictious entities (point 8. of Fig. 139), they are simply the confirmation that the

model was made consistent with the fictious entities (point 3. of Fig. 139).

All experiments where time dilation or length contraction are apparently measured

are indirect measurements and where the experimental results are explained with time

dilation or length contraction, which stand for the interactions between light and the

measuring instruments, interactions that were omited.

In the case of the increase of the life time of moving muons the increase is because

of the interactions between the FPs of the muons with the FPs of the matter that

constitute the real frame relative to which the muons move. To explain it with time

dilation only avoids that scientists search for the real physical origin of the increase of

the life time.

26.1.2 Epicycles of the Standard Model.

The Geocentric model with its circular orbits was too simple to get a good match

between experimental and calculated data. The model was improved adding for each

planet a set of epicycles to the circular orbits resulting a complicated description which

was still far from the real movement of the planets.

The concept is shawn in Fig. 140

A big improvement was done when switching first to the Heliocentric representation

and then introducing the eliptic orbits.

The concept is shawn in Fig. 141

If we have a look on the presently accepted SM, also big efforts are made to improve

the capacity to describe new experimental data adding more and more new particles

and concepts, trying at the same time to make the model consistent. This procedure

has its limits as shawn with the geocentric model and its epicycles, which became so

abstract and strange from reality that a radical new approach was required. This is

the present state of our SM.

Following a list of epicycles added to the SM during the last 150 years:

Examples Epicycles

Special Relativity time dilation and length contraction

General relativity time space curvature

Coexistence of protons in nuclei Strong force (Gluons)

Radioactivity Weak force (W, Z Bosons)

Stern Gerlach Electron intrinsic magnetic spin
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Earth

Planet

Epicycle

Geocentric model

Figure 140: Epicycles of the Geocentric model

Flattening of Galaxie’s speed curve Dark matter

Expansion of Galaxies Dark energy

Quarks Fraction of electric charge Q/e

With the “E & R “ UFT approach, where particles are represented as focal points,

and the finding that electrons and positrons neither attract nor repel each other when

the distance between them tend to zero, the epicycles added during the last 150 years

are not more required.

The affirmation that epicycles are experimentally confirmed is a fallacy.
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Sun

Heliocentric model

Figure 141: Heliocentric model

26.1.3 Peer-review, a fire-wall against new approaches.

In science, peers are those persons that use scientific models with the same postulates

to describe nature. A person who uses the geocentric model is not a peer of a person

that uses the heliocentric model to describe nature. In religion, a person who uses a

theology based on the christian dogmas is not a peer of a person that uses a theology

based for instance on the Islamic dogmas.

The mechanism of peer-review to decide about the acceptance of a paper makes

only sense, if the content of the paper is based on the same model (theory) the reviewer

uses to judge it, for instance the standard model. It has the advantage, to eliminate

papers that are based on the standard model but doesn’t use it correctly.

It is logically not acceptable, to subject a paper that presents a new model to

peer-reviewing using a different model than the proposed. The review of such a paper

requires first the study of the new model and the effort to understand the new approach,

and second, to confront it only with existent experimental data. In practice, reviewers

have not the time and interest to do such an intensive work without remuneration, and

therefore prefer to reject the paper, what is in the interest of the established institutions

and has no negative repercussions on the reviewer.
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Part VIII Quantum Mechanics

Quantum mechanics formulated with the focal point representation of subatomic par-

ticles.

27 Quantum mechanics expressed in terms of the

approach “Emission & Regeneration” UFT.

Quantum mechanics differential equations are based on the de Broglie postulate. In

the theoretical work about the interaction of charged particles, where particles are

represented by a non local model emitting and absorbing continuously fundamental

particles, a relation between the radius ro and the energy of a particle is derived.

ro =
ℏ c
E

with E =
√
E2
o + E2

p the relativistic energy. (926)

This relation is used instead of the de Broglie wavelength, to build wave packages

with a Gauss distribution, and to derive the corresponding probability differential

equations of quantum mechanics.

The effects on the uncertainty relations and the most important quantum mechanics

operators are presented.

Note: When deriving the wave-package with the radius-energy relation, the mass of

a particle is considered as concentrated in a sphere with a diameter equal approximately

to two times the radius ro given by the radius energy-relation. This is not according to

the approach that represents particles as Focal Points which led to the radius-energy

relation where the mass (energy) of a particle is distributed from ro to infinity, outside

the sphere with radius ro.

27.1 General considerations.

To make use of the of Fourier-Transformation, the movement of a particle is first

described as a sequence of particles represented by a sinus wave, having a wavelength

λ equal to 2πro. Then the Fourier-Transformation of a wave package of sinus waves

with a Gauss shaped amplitude is build.

We have that

λ = 2πro = 2π
ℏ c
Erel

with Erel =
√
E2
o + E2

p (927)

with
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Eo = mo c
2 Ep = p c p =

mo v√
1− v2

c2

(928)

The sinus wave on the x-axis is

ξx = A ei(kx x−ωx t) with kx =
2π

λx
and ωx = 2π

vx
λx

(929)

If we now introduce in the expression that λx = 2πrox = 2πℏc/Erelx we get

ξx = A exp

[
i
c

ℏ

(
Erelx
c2

x− vx
c2
Erelx t

)]
(930)

or

ξx = A exp

[
i
c

ℏ

(
Erelx
c2

x− px t

)]
(931)

with

Erelx = mo c
2

(
1− v2x

c2

)−1/2

and px =
vx
c2
Erelx (932)

with Erelx the relativistic energy of the particle on the x-axis.

Note: The wave-length used by Schroedinger is based exclusively on the kinetic

energy Ekinx for the non-relativistic case as follows.

λ = 2πro = 2π
ℏ c
Erel

with Eo = 0 and Ep = p c where p = m v (933)

The proposed approach includes for the calculation of the wave-length the total

energy with the rest energy of a particle. For the relativistic cases we get

λ = 2πro = 2π
ℏ c
Erel

= 2π
ℏ

m c γ
with γ =

1√
1− v2

c2

(934)

For v → c we get that λ→ 0.

27.2 The wave package.

We define the Fourier-Transformation of a wave package [1,2]; on the x-axis as

ϕx(x, t) =
1

2π

∫ +∞

−∞
κx(px) exp

{
i
c

ℏ
[mrelx(px) x− px t]

}
dpx (935)

with a Gauss distribution κx(px) on the px-axis
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κx(px) = B exp

{
−(px − pxo)

2

4(∆px)2

}
(936)

and the dispersion mrelx = mrelx(px) with

mrelx =
Erelx
c2

mrelx = mrelx(px) =
1

c2

√
E2
o + p2xc

2 and Eo = moc
2 (937)

Because of symmetry reasons we can write also a wave package

ψx(x, t) =
1

2π

∫ +∞

−∞
χx(mrelx) exp

{
i
c

ℏ
[mrelx x− px(mrelx) t]

}
dmrelx (938)

with the Gauss distribution on the mrelx-axis

χx(mrelx) = A exp

{
−(mrelx −mrelxo

)2

4(∆mrelx)
2

}
(939)

and the dispersion

px(mrelx) = c
√
m2
relx

− m2
o and mo =

Eo
c2

(940)

27.3 Differential equations.

27.4 Unrestricted differential equations.

In this and the following section the probability differential equations are derived. The

differential equations are classified into unrestricted and non-relativistic. Then they

are subclassified in groups of general, time or space independent.

The unrestricted differential equations are valid for the whole range of speed 0 ≤
v ≤ c.

We start with the wave package

ψx(x, t) =
1

2π

∫ +∞

−∞
χx(mrelx) exp

{
i
c

ℏ
[mrelx x− px(mrelx) t]

}
dmrelx (941)

with

mrelx =
Erelx
c2

and px(mrelx) = c
√
m2
relx

−m2
o (942)
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with

Erelx = Eo + Ekinx =
√
E2
o + E2

px Eo = moc
2 Epx = px c (943)

For the unrestricted range of velocities 0 ≤ v ≤ c we have that

px =
vx
c2
Erelx (944)

and Ekinx represents the kinetic energy for the whole range of speed.

27.4.1 The wave equation.

The wave differential equation we obtain by derivation of ψx two times versus t and

two times versus x. The results are then connected through

px =
vx
c2
Erelx (945)

We get

∂2

∂x2
ψx =

1

v2x

∂2

∂t2
ψx (946)

For vx → c we have

∂2

∂x2
ψx(x, t) =

1

c2
∂2

∂t2
ψx(x, t) (947)

the well known wave equation

27.4.2 The time independent differential equation.

Time independent differential equations are deduced deriving one time and two times

the wave function ψx.

a) We derive the wave function ψx one time versus x and get the following time

independent differential equation on the x coordinate

∂

∂x
ψx =

i

ℏ c
Erelx ψx =

i

ℏ c
(Eo + Ekinx) ψx (948)

Ekinx represents the kinetic energy for the whole range of speed, relativistic and

non-relativistic.

The equation writes for conserved systems with the potential energy U(x) as

−i ℏ c ∂
∂x
ψx − Eo ψx + U(x) ψx = [Ekinx + U(x)] ψx = Etot ψx (949)

where Etot is the conserved energy.
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b) We derivate the wave function ψx two times versus x and get the following time

independent differential equation on the x coordinate

∂2

∂x2
ψx = − c2

ℏ2
m2
relx ψx (950)

With

mrelx =
1

c2

√
E2
o + E2

px Eo = moc
2 and Epx = px c (951)

we get

∂2

∂x2
ψx = − 1

ℏ2 c2
(E2

o + E2
px) ψx (952)

27.4.3 The space independent differential equation.

We derivate the wave function ψx two times versus t

∂2

∂t2
ψx = − c2

ℏ2
p2x ψx (953)

and with

Epx = px c and E2
p = E2

px + E2
py + E2

pz (954)

we get

− ℏ2
∂2

∂t2
ψx = E2

pxψx (955)

and for the space

− ℏ2 ∆tψ = E2
pψ (956)

with the operator ∆t defined in sec. 27.7.

27.5 Non relativistic differential equations

For non relativistic speeds we have that v ≪ c and that Ekinx ≈ p2/(2mo).

27.5.1 General non relativistic differential equation.

The general non relativistic differential equation we obtain by deriving ψx two times

versus t and one time versus x. The results are then connected through Erelx − Eo =

Ekinx ≈ p2/(2mo). We get
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− i ℏ c
∂

∂x
ψx(x, t) − Eo ψx(x, t) ≈ − ℏ2

2 mo c2
∂2

∂t2
ψx(x, t) with Eo = mo c

2 (957)

The differential equation with the constant energy Eo describes the movement of a

non-accelerated particle in a cero potential energy field.

With Etot the total energy, Ekin the kinetic energy, Epot the potential energy and

Erel the relativistic energy, the above equation is equivalent to Erel − Eo = Ekin. If

we add at to the kinetic energy Ekin the potential energy Epot = Ux(x, t) we get the

total energy Etot for an accelerated movement. The result is

− i ℏ c
∂

∂x
ψx(x, t) − Eo ψx(x, t) + Ux(x, t)ψx(x, t) = Etotψx(x, t) (958)

− ℏ2

2 mo c2
∂2

∂t2
ψx(x, t) + Ux(x, t)ψx(x, t) = Etotψx(x, t) (959)

In a conservative system the total energy is time independent with Etot = constant.

Comparing equation (957) with the General SchrÃ¶dinger differential equation,
the main difference is that equation (957) derives one time versus space and two times

versus time, in other words, time and space are interchanged.

27.5.2 The time independent non relativistic differential equation.

Differential equations are deduced in derivating one time or two times the wave function

ψx.

a) We derivate the wave function ψx one time versus x

∂

∂x
ψx =

i

ℏ c
Erelx ψx =

i

ℏ c
(Eo + Ekinx) ψx (960)

For a conservative field Ux = qe Vx with a total energy Etotx we have

Etotx = Ekinx + Ux and with Ekinx ≈ 1

2 mo

p2x (961)

we get {
− i ℏ c

∂

∂x
+ U(x)

}
ψ(x) ≈ Ex ψ(x) (962)

with

Ex = Etotx + Eo (963)
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the Eigenvalue.

b) For the time independent differential equation deduced derivating the wave

function ψx two times versus x see sec. 27.8.

27.5.3 Space independent non relativistic differential equation.

We take two times the derivate of the wave function ψx versus t

∂2

∂t2
ψx = − c2

ℏ2
p2x ψx (964)

and with eq. (956)

− ℏ2 ∆tψ = E2
pψ (965)

and v ≪ c and a conservative potential U

Ekin ≈ 1

2 mo

p2 =
E2
p

2 Eo
and Etot = Ekin + U (966)

we obtain the space independent non relativistic differential equation{
− ℏ2

2 Eo
∆t + U

}
ψ ≈ Etot ψ (967)

which is equivalent to the time inependent equation from Schroedinger.

27.6 Uncertainty principle.

In the proposed model the pairs of canonical conjugated variables lead to the following

uncertainty relations

(∆E) · (∆x) ≥ 1

2
ℏ c (968)

and

(∆p) · (∆t) ≥ 1

2

ℏ
c

(969)

Noticeable at this point is the relation

E ro = ℏ c (970)

for a particle, that connects the radius ro and the relativistic energy E through ℏ c.

292



27.7 Operators.

27.7.1 Relativistic operator for the linear momentum.

The relativistic operator for the linear momentum of a particle is

p̂ = i
ℏ
c

∂

∂t
(971)

The linear momentum we get with

p̄ χ = i
ℏ
c
∇t χ (972)

where χ is the total mass-probability function

χ = ψx ψy ψz (973)

and ∇t

∇t =
∂

∂t
|x ex +

∂

∂t
|y ey +

∂

∂t
|z ez (974)

27.7.2 Relativistic operators for the energy.

For the relativistic energy of a non-accelerated particle we obtain the operator

Êrelx = − i ℏ c
∂

∂x
(975)

Application example.

If we apply the relativistic operators to the relativistic energy of a particle

E2
x = m2

o c
4 + p2x c

2 (976)

we get

− ℏ2 c2
∂2

∂x2
ψx = m2

o c
4 ψx − ℏ2

∂2

∂t2
ψx (977)

the Klein-Gordon equation.

With mo = 0 we have

∂2

∂x2
ψx =

1

c2
∂2

∂t2
ψx (978)
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27.7.3 Non-relativistic operator for the kinetic energy.

The non-relativistic operator for the kinetic energy on the x coordinate is

Êkinx = − ℏ2

2 mo c2
∂2

∂t2
|x (979)

and the total kinetic energy Ekin in the three dimensional space

Ekin = Ekinx + Ekiny + Ekinz = − ℏ2

2 mo c2
∆tχ (980)

with

∆t =
∂2

∂t2
|x +

∂2

∂t2
|y +

∂2

∂t2
|z (981)

27.7.4 Non-relativistic Hamilton operator.

The operator for the non-relativistic total energy on the x coordinate has the form

Êx =
1

2 mo

(
i
ℏ
c

∂

∂t
|x
)2

+ Ûx (982)

or

Êx =
p̂ 2
x

2 mo

+ Ûx (983)

which is equal to the Hamilton operator Ĥx.

The general non-relativistic differential equation thus takes the form

i ℏc
∂

∂x
ψx(x, t) = Ĥx ψx(x, t) (984)

with

Ĥx =
p̂ 2
x

2 mo

+ Ûx (985)

the non-relativistic Hamilton operator.

27.7.5 Non-relativistic operator for the orbital-angular-momentum.

The wave function for the three dimentional space is

ψx(r, t) =
1

2π

∫ +∞

−∞
χ(mrel) exp

{
i
c

ℏ
[mrel r− p(mrel) t]

}
dmrel (986)

with
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r = x ex + y ey + z ez and p = px ex + py ey + p ez (987)

We define the linear momentum operator for the different coordinates as:

p̂k = i
ℏ
c

∂

∂t
|k (988)

The orbital-angular-momentum-operator can be expressed as

M

(
r, i

ℏ
c
∇t

)
=

(
r × i

ℏ
c
∇t

)
(989)

with

∇t =
∂

∂t
|x ex +

∂

∂t
|y ey +

∂

∂t
|z ez (990)

The operators for the vectorcomponents are:

M̂x = ŷ p̂z − ẑ p̂y M̂y = ẑ p̂x − x̂ p̂z M̂z = x̂ p̂y − ŷ p̂z (991)

The conmutations are as known

[M̂k, M̂k+1] ̸= 0 [M̂k, Q̂] = 0 with Q̂ = M̂2
x + M̂2

y + M̂2
z (992)

27.8 The proposed theory and the Correspondence Principle.

The present theory is based on the radius-energy relation that substitutes the de Broglie

wavelength.

The accordance of the proposed theory with the correspondence principle of quan-

tum mechanics is ensured, in that the time independent differential equation from

Schroedinger, deduced from the wave package constructed with the de Broglie wave-

length, can be derived from the wave package constructed with the radius-energy rela-

tion presented in this work.

We start derivating the wave function ψx two times versus space, to get the time

independent differential equation

∂2

∂x2
ψx = − c2

ℏ2
m2
relx ψx (993)

With

mrelx =
1

c2

√
E2
o + E2

px Eo = moc
2 and Epx = px c (994)
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we get

∂2

∂x2
ψx = − 1

ℏ2 c2
(E2

o + E2
px) ψx (995)

For non-relativistic velocities v ≪ c we have that

Ekinx =
p2x

2 mo

and E2
px = p2x c

2 = 2 mo c
2 Ekinx (996)

and we get

∂2

∂x2
ψx = − 2 mo

ℏ2

[
1

2
Eo + Ekinx

]
ψx (997)

With a conservative potential Etotx = Ux + Ekinx we get finally

[
− ℏ2

2 mo

∂2

∂x2
+ Ux

]
ψx = Ex ψx with Ex =

1

2
[Eo + 2 Etotx ] (998)

For the three dimensional space we have[
− ℏ2

2 mo

∆r + U

]
χ = E χ (999)

with ∆r the Laplace operator and

E =
1

2
[Eo + 2 Etot] (1000)

If we make Eo = 0 we get[
− ℏ2

2 mo

∆r + U

]
χ = Etot χ (1001)

Eq. (1001) is exactly the time independent differential equation constructed by

Schroedinger with Etot the Eigenvalue.

27.9 The mass conservation equation.

The mass conservation differential equation we obtain by derivating ψx one time versus

t and one time versus x. The results are then connected through

px =
vx
c2
Erelx (1002)

We get

∂

∂t
ψx(x, t) = − vx

∂

∂x
ψx(x, t) (1003)
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We define the mass probability density as

ρx(x, t) = ψ∗
x(x, t) ψx(x, t) or ρ(r, t) = ψ∗(r, t) ψ(r, t) (1004)

We derive the mass probability density versus time

∂

∂t
ρx(x, t) =

∂

∂t
[ψ∗
x(x, t) ψx(x, t)] =

∂

∂t
ψ∗
x(x, t) ψx(x, t) + ψ∗

x(x, t)
∂

∂t
ψx(x, t) (1005)

With eq. (1003) we get

∂

∂t
ρx(x, t) = −vx

[
∂

∂x
ψ∗
x(x, t) ψx(x, t) + ψ∗

x(x, t)
∂

∂x
ψx(x, t)

]
(1006)

or

∂

∂t
ρx(x, t) = −vx

∂

∂x
[ψ∗
x(x, t) ψx(x, t)] = − ∂

∂x
[vx ρx(x, t)] = − ∂

∂x
j(x, t) (1007)

or

∂

∂t
ρ(r, t) = − ∇r j(r, t) with j(r, t) = v ψ∗(r, t) ψ(r, t) (1008)

where j(r, t) is the mass-current probability density.

27.10 The wave equation for relativistic speeds.

We start with the wave eq. (938) from sec. 27.2

ψx(x, t) =
1

2π

∫ +∞

−∞
χx(mrelx) exp

[
i
c

ℏ
(mrelx x− px(mrelx) t)

]
dmrelx (1009)

and analyze the equation for relativistic speeds where ∆v = c− v ≪ c. We get

Erel = Ep = p c =
m v

β
c β =

√
1− v2

c2
λ =

h

p
(1010)

The resulting wave equation is

ψx(x, t) =
1

2π

∫ +∞

−∞
χx(mrelx) exp

[
i

ℏ
(p x− Epv t)

]
dmrelx (1011)

where

Epv = p v =
m v

β
v (1012)
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With Erel = pc2/v and E2
o ≪ E2

p we get

Epv = p v =
p2 c2

Erel
=

p2 c2√
E2
o + E2

p

≈ pc = Ep (1013)

We now derive the wave equation one time versus space and one time versus time

and connect the results with Epv = pc. We get

∂

∂t
ψx = − c

∂

∂x
ψx (1014)

28 Wave equations for free moving particles.

28.1 The relativistic wave equation for the free moving parti-

cle.

Until now we have worked with the wave package defined with eq. (938) where the

integration is made versus dmrelx . In what follows the wave package defined with eq.

(935) is used where the integration is made versus dp.

We start with the dispersion equations for the relativistic mass mrelx of sec. 27.2.

In what follows we omit the sub-index x and write mrel instead of mrelx .

mrel =
Erel
c2

mrel = mrel(p) =
1

c2

√
E2
o + p2c2 and Eo = moc

2 (1015)

which can be transformed to

mrel =
1

c

[
p2 +

E2
o

c2

]1/2
=

1

c

[
p+ p

′
]

(1016)

with

p
′

1,2 = −p±
√
p2 +

E2
o

c2
(1017)

We also transform

p(mrel) = c
√
m2
rel − m2

o and mo =
Eo
c2

(1018)

to

p =
1

c

[
E2
rel −m2

o c
4
]1/2

with Erel = Eo + Ekin (1019)

and

298



p =
1

c

[
E2
kin + 2 Eo Ekin

]1/2
=

1

c

[
Ekin + E

′
]

(1020)

with

E
′

1,2 = −Ekin ±
√
E2
kin + 2 Eo Ekin (1021)

Note: In what follows we changed the symbol for the wave function from ϕ to Ψ

to follow the convention.

If we now introduce (1016) and (1020) in eq. ( 935 )

Ψ(x, t) =
1

2π

∫ +∞

−∞
κx(px) exp

{
i
c

ℏ
[mrelx(px) x− px t]

}
dpx (1022)

we get

Ψ(x, t) ∝ exp

{
i

ℏ

[
[p+ p

′
]x− [Ekin + E

′
]t
]}

(1023)

what we can write in the form

Ψ(x, t) ∝ exp

{
i

ℏ

[
p
′
x− E

′
t
]}

· exp
{
i

ℏ
[p x− Ekin t ]

}
(1024)

We know that

Erel = Eo + Ekin = Es + En (1025)

with

Es =
E2
o√

E2
o + E2

p

En =
E2
p√

E2
o + E2

p

Ep = p c (1026)

For relativistic speeds v > 0.95c we have that

Es << En Erel ≈ En ≈ Ep Ekin ≈ En − Eo (1027)

and

p
′

1 = 0 p
′

2 = −2p E
′

1 = 0 E
′

2 = −2Ekin (1028)

and get

Ψ(x, t) ∝ exp

{
± i

ℏ
[p x− Ekin t ]

}
= exp

{
± i

ℏ
[p x− (En − Eo) t ]

}
(1029)

299



where Ekin is the relativistic kinetic energy.

28.1.1 The wave package for the relativistic wave equation.

To get the wave package we derive (1029) one time versus space and one time versus

time.

c
∂

∂x
ψx ∝ ± i

ℏ
p c ψx (1030)

∂

∂t
ψx ∝ ± i

ℏ
[p c − Eo] ψx (1031)

We now eliminate from the two equations p c ψx and get

∂

∂t
ψx ∝ − c

∂

∂x
ψx ± i

ℏ
Eo ψx (1032)

The time independent equation is

−i ℏ c ∂

∂x
ψx = ± Eo ψx (1033)

which with an potential U(x) gives

−i ℏ c ∂

∂x
ψx + U(x)ψx = [± Eo + Etot] ψx = Eψx (1034)

If we compare it with (958) which was derived with the wave package defined with

eq. (938) where the integration is made versus dmrelx , and which was derived as non

relativistic

− i ℏ c
∂

∂x
ψx(x, t) − Eo ψx(x, t) + Ux(x, t)ψx(x, t) = Etotψx(x, t) (1035)

we see that they are equal. This means that we have the same equation for non

relativistic and relativistic problems.

28.2 The slightly relativistic wave equation for the free mov-

ing particle.

For v << c we have that p ≈ mv

Es ≈ Eo and En ≈ Erel − Eo = Ekin (1036)

Also for v → 0 we get that
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Ekin → 0 and E
′ → 0 for v → 0 (1037)

and

p→ 0 and p
′ → mc for v → 0 (1038)

From ( 1024 ) we get

Ψ(x, t) ∝ exp

{
i

ℏ
[mc x ]

}
· exp

{
i

ℏ
[p x− Ekin t ]

}
(1039)

where we have that the first exponent is not a function of p and Ekin. As p = mv

from the second exponent is much smaller than mc from the first exponent, the first

exponent oscillates along the x − axis between plus and minus of its absolute value

which is one. The frequency of the oscillation of the first factor is very high compared

with the second, and the first factor can be made equal to one for all x.

Ψ(x, t) ∝ exp

{
i

ℏ
[p x− Ekin t ]

}
(1040)

With p ≈ mv we also can write

Ekin ≈ − c2

2Eo
p2 +

1 · 3
2 · 4

c4

E3
o

p4 − 1 · 3 · 5
2 · 4 · 6

c6

E5
o

p6 + · · · (1041)

and arrive to the relativistic wave equation for a free moving particle

i ℏ
∂

∂t
Ψ =

[
ℏ2

2m

∂2

∂x2
+

1 · 3
2 · 4

ℏ4

m3c2
∂4

∂x4
· · ·

]
Ψ (1042)

If we take into consideration only the first two terms of Ekin and introduce an

external potential U(x), we get the following time independent wave equation for a

slightly relativistic moving charged particle in an external potential.[
ℏ2

2m

∂2

∂x2
+

1 · 3
2 · 4

ℏ4

m3c2
∂4

∂x4
+ U(x)

]
Ψ = E Ψ (1043)

To calculate the maximum velocity vmax for this case we make the third term of

eq. (1041) ten times smaller than the second term and get vmax = 0.346 c. It is not

recommended to use more than two terms of eq. 1041 because of the approximations

made for the deduction.

Note: Eq. 1043 allows to calculate the solutions for QM systems which are slightly

relativistic instead of using the strong relativistic Dirac formulation.
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28.3 The non-relativistic wave equation for the free moving

particle

If we make Eo = 0 because we want an equation that describes only the kinetic energy

we get p
′
= 0 and E

′
= 0, and if we reduce our observation to non-relativistic speeds

with v << c we have from eq. (1024)

Ψ(x, t) ∝ exp

{
i

ℏ
[p x− Ekin t ]

}
with Ekin =

1

2

p2

m
= Ekin(p) (1044)

Ψ(x, t) =
1

2π

∫ +∞

−∞
κx(px) exp

{
i

ℏ
[p x− Ekin(p) t]

}
dpx (1045)

The wave function derived two times versus x and one time versus t gives the

differential equation of the free moving particle of mass m. If we introduce an external

potencial U we have the SchrÃ¶dinger equation for an accelerated particle.

i ℏ
∂

∂t
Ψ(x, t) ≈

[
− ℏ2

2 mo

∂2

∂x2
+ U

]
Ψ(x, t) (1046)

29 Applications of the non-relativistic differential

equation

The solutions of the time independent non-relativistic differential equation (958) for a

potential pot, the harmonic oscillator and the hydrogen atom are derived.

29.1 Potential pot

The non-relativistic time independent differential equation is

− i ℏ c
∂

∂x
ψx(x) + Ux(x) ψx(x) = [Etot + Eo] ψx(x) = E ψx(x) (1047)

With y = ψx(x) we can write

− i ℏ c
dy

y
= [E − U ] dx (1048)

After integration we get

− i ℏ c [ln |y|+ lnCy] =

∫
[E − U ] dx (1049)
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resulting

|y| = 1

Cy
exp

{
i

ℏ c

∫
[E − U ] dx

}
(1050)

Equation (1050) is valid for all potential energies U and gives real values for y if

{
i

ℏ c

∫
[E − U ] dx

}
= k π and k = 0, ±1, ±2, ±3, · · · (1051)

defining the quantization condition, which together with the normalization condi-

tion allows the calculation of the eigenfunctions.

The potential pot is defined as

U =


∞ for x ≤ 0

0 for 0 < x < a

∞ for x ≥ a

and we have for U = 0 and a constant E because of the assumption of energy

conservation

1

ℏ c
E x = k π resulting with x = a Ek = π

ℏ c
a
k (1052)

with k = 0, ±1, ±2, ±3, · · · the eigenvalues Ek.

The total energy is with Ek = Etot + Eo

Etot = Ek − Eo = π
ℏ c
a
k − Eo (1053)

and for Etot = 0 we get

ao = k
πℏ c
Eo

= k π ro with
ℏ c
Eo

= ro (1054)

the radius of of a rest electron or positron.

The eigenfunction is

yk =
1

Cy
exp

{
i

ℏ c
Ek x

}
(1055)

The integration constant Cy we get with the normalization condition∫ ∞

−∞
y∗
k′
yk dx = δ(k′ ,k) (1056)

For k
′
= k we get
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1

C2
y

∫ a

0

exp

{
i

ℏ c
[Ek′ − Ek] x

}
dx = 1 (1057)

resulting

1

C2
y

= a or Cy =
√
a (1058)

The normalized eigenfunction is

yk =
1√
a
exp

{
i

ℏ c
Ek x

}
(1059)

Conclusion: The main differences compared with the solution obtained with the

Schroedinger equation is that the quantization of the energy Ek is proportional to k

instead of k2 and for defined values of a the total energy Etot becomes zero.

29.2 Harmonic oscillator

The potential energy for the harmonic oscillator is

U(x) =
K

2
x2 =

m ω2

2
x2 with ω2 = K/m (1060)

With eq. (1050) we get

|y| = 1

Cy
exp

{
i

ℏ c

∫ [
E − K

2
x2
]
dx

}
(1061)

With the quantization condition we get

1

ℏ c

∫ a

0

[
E − K

2
x2
]
dx =

1

ℏ c

[
E a− K

6
a3
]
= k π (1062)

resulting for the quantized energy with Etot = Ek − Eo

Etot = π
ℏ c
a

[
k +

1

6

m ω2

π ℏ c
a3
]
− Eo = Ek − Eo (1063)

The minimum quantum change between two adjacent energy levels is

∆Etot = ∆Ek = π
ℏ c
a

(1064)

For Etot = 0 we get

a

[
Eo −

1

6
m ω2 a2

]
= k π ℏ c (1065)

which for k = 0 gives
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a1 = 0 or a2,3 = ±
√

6 Eo
m ω2

for k = 0 (1066)

We get for the minimum quantum change between two adjacent energy levels

∆Etot = ± π√
6
ℏω (1067)

The minimum quantum energy difference ∆Etot between two adjacent energy levels

is proportional to ℏω.
With the normalization condition given by equation (1056) we have that∫ ∞

−∞
y∗
k′
yk dx =

1

C2
y

∫ ∞

−∞
exp

{
i

ℏ c
[Ek′ − Ek] x

}
dx (1068)

or

ℏ c
C2
y

∫ ∞

−∞
exp { i [Ek′ − Ek] η} dη =

ℏ c
C2
y

δ(k′ ,k) with η =
x

ℏ c
(1069)

With k
′
= k we get the integration constant Cy =

√
ℏ c resulting the normalized

eigenfunctions

yk =
1√
ℏ c

exp

{
i

ℏ c

[
Ek x−

K

6
x3
]}

(1070)

29.3 Hydrogen atom

We start with the deduction of the quantization conditions from eq. (958) which was

deduced for non relativistic speeds but is also valid for relativistic speeds as shown in

sec. 28.1.1.

− i ℏ c
∂

∂x
ψx(x) + Ux(x) ψx(x) = [Eo + Etot] ψx(x) = E ψx(x) (1071)

which is equivalent to

Erel + U = Eo + Ekin + U = E Etot = Ekin + U Erel = Eo + Ekin (1072)

We define the operator

∇⃗ · E⃗ = ∇E =
∂

∂x
+

∂

∂y
+

∂

∂z
with E⃗ = e⃗x + e⃗y + e⃗z (1073)
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∇E ψ(x, y, z) =
∂

∂x
ψ(x, y, z) +

∂

∂y
ψ(x, y, z) +

∂

∂z
ψ(x, y, z) (1074)

For polar coordinates we write

− i ℏ c ∇ χ(r, θ, φ) + U χ(r, θ, φ) = E χ(r, θ, φ) (1075)

with the ∇ operator expressed in polar coordinates

∇ =
∂

∂r
+

2

r
+

1

r sin θ

∂

∂φ
+

1

r

∂

∂θ
+

1

r
cot θ (1076)

The differential equation has now the form[
∇ +

i

ℏ c
U

]
χ =

i

ℏ c
E χ (1077)

We now assume that the wave function χ can be expressed as a product of a function

exclusively of the distance r and a function of the angular variables θ and φ.

χ(r, θ, φ) = R(r) Y (θ, φ) (1078)

We get [
d

dr
+

4

r

]
R · Y +

1

r
ΛY ·R +

i

ℏ c
U ·R · Y =

i

ℏ c
E ·R · Y (1079)

with the operator Λ

Λ =
1

sin θ

∂

∂φ
+

∂

∂θ
+ 2 cot θ (1080)

We now assume that

ΛY = −λY (1081)

and get two separate differential equations for R(r) and Y (θ, φ).

d

dr
R− i

ℏ c
[E − U ]R +

1

r
[4− λ]R = 0 (1082)

and [
1

sin θ

∂

∂φ
+

∂

∂θ
+ 2 cot θ

]
Y = −λY (1083)

After multiplying Eq. (1082) with dr/R and integrating we get

lnR =
i

ℏ c

∫ r

ru

[E − U ] dr − [4− λ] ln
r

ru
(1084)

306



where ru and r are arbitrary integrating limits that will be defined later on.

From the solution of eq. (1083) results that λ = i l with l = 0, ±1, ±2; · · · as will
be shown later at sec. 29.3.2. We get

R = exp

{
−4 ln

r

ru

}
exp

{
i

ℏ c

[∫ r

ru

(E − U)dr + l ℏ c ln
r

ru

]}
(1085)

The quantization condition requires that

1

ℏ c

[∫ r

ru

(E − U)dr + l ℏ c ln
r

ru

]
= k π with k = 0, ±1, ±2; · · · (1086)

Equation (1086) is valid for all point symmetrical potentials U . We now introduce

the potential of an atomic nucleus

U = − Z
Ku

r
with Ku =

e2

4π ϵo
(1087)

Note: According to the focal-point approach, nuclei are composed of electrons

and positrons that neither attract nor repel each other for the distance between them

tending to zero.

If Np are the number of positrons and Ne the number of electrons which constitute

the nucleus we have that

Z = Np − Ne (1088)

For the hydrogen it is Np = 919 and Ne = 918.

For energy conservation conditions we have that∫ r

ru

Edr = E (r − ru) (1089)

with the value E a constant. We get

E =

[
k π ℏ c− (Z Ku + l ℏ c) ln

r

ru

]
1

r − ru
(1090)

In eq. (1090) the terms represent E = Ēk + Ū + Ēl where

Ēk =
k π ℏ c
r − ru

Ū = − Z Ku

r − ru
ln

r

ru
Ēl = − l ℏ c

r − ru
ln

r

ru
(1091)

To arrive to the Balmer equation for the hydrogen atom the following steps are

necessary.

Step one:

The term that describes the potential energy
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Ū = − Z Ku

r − ru
ln

r

ru
= − Z e2

4π ϵo

1

r − ru
ln

r

ru
(1092)

gives the potential energy Ū for an orbital electron and Z charges e+ at the atomic

nucleus.

We now assume, that the orbital electron can interact with np positrons of the Np

positrons of the nucleus, where np >= Z.

Ūn = − np e
2

4π ϵo

1

r − ru
ln

r

ru
(1093)

The concept is shown in Fig. 142

++

-
-
-

++

++

++

-

r 

Figure 142: Orbital electron with np = 3.

Step two:

As the radius r
′
of an atom is constant, the potential energy is constant for all

number np of positrons the orbital electron can interact. We can write

Ūn = − Ku
np

r − ru
ln

r

ru
= − e2

4π ϵo

1

r′
= − Ku

r′
np >= Z (1094)

We get that

1

r − ru
ln

r

ru
=

1

np r
′ r

′
= constant (1095)

Step three:

From eq. (1092) we get
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Ū = − Z
Ku

r − ru
ln

r

ru
= − Z

Ku

np r
′ (1096)

If we now assume that the quantization of the charges of the nucleus which interact

with the orbital electron follows the rule np = n2, we get for the energy levels

Ū = − Z
Ku

n2 r′
n = 1, 2, 3, · · · np = n2 (1097)

The energy levels of the orbital electron have their origin in the number of positrons

np of the nucleus with which they interact. The number is given by the quantum

number n. We have for

n = 1, 2, 3, 4 respectively np = 1, 4, 9, 16 (1098)

The difference between energy levels is

∆Ū = Z
Ku

r′

[
1

n2
− 1

(n+∆n)2

]
∆n = 0, 1, 2, · · · (1099)

For ∆n = 1 we get

∆Ū = Z
Ku

r′

[
1

n2
− 1

(n+ 1)2

]
(1100)

which for Z = 1 is equal to Balmers spectroscopic equation for the hydrogen, namely

E = h c RH
1

n2
and ∆E = h c RH

[
1

n2
− 1

(n+ 1)2

]
(1101)

with RH the Rydberg constant and n = 1, 2, ......

From the two equations (1100) and (1101) for the potential energy we get

Ku

r
′
H

= h c RH r
′

H =
Ku

h c RH

= 1.05811 · 10−10 m (1102)

The relation between the mean distance r
′
H and the Bohr radius ao is

r
′

H = 2 ao = 1.05811 · 10−10 m (1103)

We conclude, that the potential levels of the orbital electron at the hydrogen atom

have their origin in the number of positrons of the nucleus that interact with the

orbital electron. From the 919 positrons of the hydrogen nucleus, at each potential

level np = n2 interact with the orbital electron.

The proposed approach “ Emission & Regeneration” UFT is based on focal-point

representation of subatomic particles. Electrons and positrons are represented as focal-

points of rays of Fundamental Particles (FPs) that move from infinite to infinite with
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light speed or infinite speed. A focal-point emits FPs with light speed and is regener-

ated by FPs with infinite speed and vice-versa. There are two types of electrons and

positrons according they emit FPs with light (deccelerating=dec) or with infinite (ac-

celerating=acc) speed. Acceleration or deceleration refers to the speed of the outgoing

FPs relative to the incoming FPs at the focal-point. Lets call them

• acc+ positron that emits FPs with infinite speed

• dec+ positron that emits FPs with light speed

• acc− electron that emits FPs with infinite speed

• dec− electron that emits FPs with light speed

In the proposed approach electrons and positrons don’t have an intrinsic spin. The

spin has its origin in a circular movement of the focal point on the orbit of the electron

similar to the movement of an epysicle. See sec. 30.2.

The infinite speed for FPS is a requirement that comes from the need that subatomic

particles must be regenerated immediately after having emitted FPs. The infinite speed

also explains entanglement.

Regenerating FPs of subatomic particles are those FPs that have been emitted pre-

viously by other subatomic particles. All existing electrons and positrons are connected

through their rays of emitted and regenerating FPs.

29.3.1 Generalization of the procedure to derive the splitting of the energy

levels

From the previous steps required to derive the splitting of the potential energy, we now

establish the general rule to derive the splitting of the energies of the orbital electrons.

The rule is as follows:

With a term of the type

B = A
ln r

ru

r − ru
(1104)

where r and ru are arbitrary integration limits, we can build an equation with a

constant radius r
′
of the type

B
′

γ = A γ
ln r

ru

r − ru
=
A

r′
what gives

ln r
ru

r − ru
=

1

γ r′
(1105)

If we introduced the result in eq. 1104 we get

B = A
ln r

ru

r − ru
=

A

γ r′
(1106)
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We start applying the rule to the term of the potential energy to show that we

arrive to the same eq. (1097) which led to the Balmer equation. We start with

Ū = −Ku

ln r
ru

r − ru
(1107)

We introduce to the equation the factor γ = n2 and impose that it must be equal

to Ku/r
′
.

Ū
′
= −Ku n

2
ln r

ru

r − ru
= −Ku

r′
what gives

ln r
ru

r − ru
=

1

n2 r′
(1108)

and with eq. (1107)

Ū = − Ku

n2 r′
(1109)

which is equal to eq. (1097) which led us to the Balmer equation except for the

factor Z.

Now we calculate the splitting of the energy also for the orbital angular momentum

quantum number l.

We start with

E = Ku

ln r
ru

r − ru
(1110)

and with eq. (1090) with a potential np >= Z

E
′
=

[
−np Ku − l ℏ c +

k π

ln r
ru

ℏ c

]
ln r

ru

r − ru
(1111)

and apply the rule to eq. (1111) that we can write with Ku = α ℏ c

E
′
= Ku

[
−np −

l

α
+

k π

α ln r
ru

]
ln r

ru

r − ru
=

Ku

r′
Ku = α ℏ c (1112)

with α = 1
137

the fine-structure constant.

We get
ln r

ru

r − ru
=

1

r′
[
−np − l

α
+ k π

α ln r
ru

] (1113)

and with eq. 1110 we get that

E =
Ku

r′
[
−np − l

α
+ k π

α ln r
ru

] (1114)
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and with np = n2 we get

E = − Ku

r′
[
n2 + 1

α

(
l + k π

ln r
ru

)] (1115)

If we make k = 0 we get

E
′
= − Ku

r′ [n2 + l α−1 ]
= − Ku

r′ [n2 + 137 l ]
(1116)

With l = 0 we get again Balmers equation

Now we calculate ln r
ru

from eq. 1085

R(r) = exp

(
−4 ln

r

ru

)
k = 0,±1,±2, · · · (1117)

For the hydrogen atom it is R = r
′
H = 2 ao = 1.06 · 10−10 m we get ln r

ru
= 5.74

what gives

k π

ln r
ru

= 0.547 k ≈ 1

2
k k = 0,±1,±2, · · · (1118)

We see that the total orbital angular momentum quantum number is

j = l + 0.547 k ≈ l +
1

2
k with k = 0,±1,±2,±3, · · · (1119)

The spectroscopic energy is given by

∆E =
Ku

r′

 1[
n2 + 1

α

(
l + k π

ln(r/ru)

)] − 1[
n′ 2 + 1

α

(
l′ + k′ π

ln(r/ru)

)]
 (1120)

where

ln(r/ru) = − 1

4
lnR(r) with R(r) = r

′
the atomic radius (1121)

As electrons repel each other they place themselves as far as possible on the orbit.

The orbit can be occupied only by two electrons which are placed at the opposite

sides of the diameter of the orbit, which is now characterized by the quantum number

k = ±1 . This quantum number replaces the fictitious spin s = ±1/2. The Pauli

principle refers now to the following quantum numbers n, l, ml, k which cannot be
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all equal for two orbital electrons.

Configuration of electrons

−−−−−−−−−−−−−−−−−−−−− −−−− −−−−
n l ml k Electr. per shell

−−−−−−−−−−−−−−−−−−−−− −−−− −−−−
1 0 0 ±1 2

−−−−−−−−−−−−−−−−−−−−− −−−− −−−−
2 0 0 ±1 2

1 1, 0, −1 ±1 6

−−−−−−−−−−−−−−−−−−−−− −−−− −−−−
3 0 0 ±1 2

1 1, 0, −1 ±1 6

2 2, 1, 0, −1, −2 ±1 10

−−−−−−−−−−−−−−−−−−−−− −−−− −−−−

Note: The present approach gives the principal quantum number a physical inter-

pretation, namely, the number of positrons np that interact with the orbital electron.

29.3.2 Deduction of the condition λ = i l.

Now we deduce the condition λ = i l introduced previously in eq. (1083).[
1

sin θ

∂

∂φ
+

∂

∂θ
+ 2 cot θ

]
Y = −λY (1122)

We assume that

Y (θ, ϕ) = Θ(θ) Φ(φ) and
d

dφ
Φ = m Φ (1123)

and with Φ(φ) = Φ(φ+ 2π) we get

Φ = exp{m φ} with m = i ml and ml = ±0, ±1, ±2; · · · (1124)

With eq. (1123) we have that eq. (1083) transforms to

m

sin θ
Θ+

d

dθ
Θ + 2 cot θ Θ = − λ Θ (1125)

and

dΘ

Θ
= −

[ m

sin θ
+ 2 cot θ + λ

]
dθ (1126)
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which gives the solution

Θ =
1

CΘ

exp

{
−
∫ [

i ml

sin θ
+ 2 cot θ + λ

]
dθ

}
(1127)

With Θ(θ) = Θ(θ + 2π) we conclude that

Θ =
1

CΘ

exp {−2 ln sin θ} exp {−i [ ml ln(csc θ − cot θ) + l θ ]} (1128)

with λ = i l and l = ±0, ±1, ±2; · · · what we have anticipated for eq. (1085).

Eq.( 1125) we can now write as

d

dθ
Θ + i

ml

sin θ
Θ = − 2 cot θ Θ − i l Θ (1129)

In this equation the real and the imaginary terms must be equal, and we get from

the imaginary terms that

ml

l
= − sin θ with ml = ±0, ±1, ±2; · · · and l = ±0, ±1, ±2; · · · (1130)

We conclude, that the relation between the orbital quantum number l and the

magnetic quantum number ml is∣∣∣ml

l

∣∣∣ = | − sin θ| ≤ 1 or |ml| ≤ | − l sin θ| (1131)

ml is the projection of l on the x− y plane and gives the projection of the orbital

area A = π l2 on the x− y axis.

Ax,y = π m2
l = π (l sin θ)2 ml ≤ l (1132)

Ax,y is the part of the orbital area perpendicular to the z − axis. The z − axis

defines the magnetic flux Φ for an external magnetic field in z direction.

Φ = B⃗z · A⃗ Φ = Bz Az (1133)

An unbound orbital electron is always forced by an external magnetic field Bz to

move in a plane perpendicular to the z axis.

An inhomogeneous magnetic field Bz, generates a force in the z direction on an

unbound orbital electron.

F⃗z = (m⃗ · δ

δr⃗z
)B⃗z m⃗ = I A⃗ cos θ I =

e ω

2π
(1134)
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This force is measured in the Stern-Gerlach experiment. The standard model asso-

ciates an angular momentum to the magnetic field of an orbiting electron. As unbound

orbital electrons have no angular momentum, a fictitious angular momentum (spin)

was postulated.

The energy splitting in a magnetic field is given by

∆E = gl ml µB Bz (1135)

with gl the Lande factor, ml the quantum number projection of angular momentum,

µB the Bohr magneton, and Bz the magnetic flux density.

Conclusions: The present approach is based on the “E & R “ model, where

nucleons are composed of electrons and positrons that neither attract nor repel each

other when the distance between them tends to zero. A nucleon can polarize, so that

an orbital electron can interact during a short time with more than one positron of the

nucleon. In the case of the hydrogen, the orbital electron can be attracted during a

short time by two or more positrons of the proton defining the higher energy levels for

the orbital electron.

As nucleons are composed of electrons and positrons, also quarks are composed

of electrons and positrons. The fractional charges of quarks are simply the relation

between the number of electrons or positrons that integrate the quark, to the total

number of electrons and positrons that compose the quark. No fractional charges

exist.

The electron shells of atoms is the result of the accommodation of the electrons

and positrons of the atomic nuclei in the quarks. The combination principle used in

spectroscopy becomes with the “E & R “ model a physical interpretation.

29.4 Helium atom.

Fig. 143 shows the Helium atom where one orbital electron interacts with n1 positrons

and the other with n2 positrons of the nucleus.

The potential energy of the excited system is given by

EHe = En1 + En2 + E1,2 (1136)

where

En1 = Ku
1

r
′
He

1

n2
(1137)
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Figure 143: Energy levels at an excited helium atom.

En2 = Ku
1

r
′
He

1

n2
(1138)

E1,2 =
Ku

2 r
′
He n

2
(1139)

Note: The present approach explains energy levels with:

• the number np of positrons of the nucleus that interact with the orbital electron.

• the quantization of radii of orbital electrons expressed with r
′
= r

′
(n, l,ml, k).

The last explains the energy quantization at the positronium where np = ne = 1.

The general explanation is given by the interaction between FPs emitted by external

nuclei and orbital electrons, and the own emitted FPs. The quantization of energy levels

is finally reduced to the quantization of the energy of each FP.

EFP = h νFP with νFP a universal constant (1140)
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Part IX Miscellaneous III

30 Splitting of atoms and energy levels.

The present approach gives different interpretations for the splitting of atoms at the

Stern-Gerlach experiment and the splitting of energy levels at the hydrogen atom.

30.1 Splitting of atoms in the Stern-Gerlach experiment.

To explain the splitting of the atomic ray in the Stern-Gerlach experiment, electrons

were assigned an intrinsic spin with a quantized magnetic field that takes two positions,

up and down relative to an external magnetic field, although it is not possible to explain

how the intrinsic spin and magnetic field are generated. Measurements with individual

electrons to detect the magnetic spin are fruitless because of the strong Lorenz force.

Classical physics associates to an orbital electron an angular moment l⃗ and a mag-

netic moment µ⃗

µ⃗ = IA⃗ = − e

2me

l⃗ (1141)

An external field B⃗ generates a potential magnetic energy Epot and an angular

moment D⃗

Epot = −µ⃗B⃗ D⃗ = µ⃗× B⃗ =
d

dt
l⃗ (1142)

If the angular moment l⃗ = 0 we have that µ⃗ = 0, Epot = 0 and D⃗ = 0.

Unbound orbital electrons have in quantum mechanics angular moment l⃗ = 0 what

would give an magnetic moment µ⃗ = 0 and make impossible to explain the splitting of

the neutral atom in the Stern-Gerlach experiment. To solve the problem, an intrinsic

spin s⃗ was postulated for the electron with an operator with an eigenstate of the

z component of the spin operator with the projection quantum number ms = ±1
2
ℏ

parallel to the external field B⃗. The magnetic moment then becomes

ˆ⃗µs = gs µB
ˆ⃗s

ℏ
with µB = − eℏ

2me

(1143)

The postulate of an intrinsic spin makes the magnetic moment µ⃗s independent of

the existence of the angular moment l of the orbital electron and the Stern-Gerlach

experiment can be explained.

For the standard model the unbound orbital electron has no angular orbital moment

and the generated magnetic field takes the direction of maximum compensation of the
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external magnetic field. This field is opposed to the external magnetic field what is

expressed with the projection quantum number ms = ±1/2.

The proposed approach has no unbound orbital electrons because atomic nuclei are

composed of electrons and positrons that move with the orbital electron and generate

an angular moment l ̸= 0.

Fig: 144 shows the generation of the magnetic field dHn independent of the angular

moment l of an orbital electron.

The concept is shown in Fig: 144

a)

b)
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Figure 144: Magnetic field dHn of an orbital electron.

The approach E&R UFT shows that electrons and positrons coexist in nucleons

without repelling or attracting each other. They can be seen as swarms of electrons

and positrons forming the nucleon. As nuclei are composed of nucleons they are also

composed of electrons and positrons as shown in Fig. 144 a).

The charge Q of a nucleus is replaced by the expression ∆n = n+ −n− which gives

the difference between the constituent numbers of electrons and positrons that form

the nucleus. As the ni are integer numbers, the Charge of the nucleus is quantified.

As examples we have for the proton n+ = 919 and n− = 918 with a binding Energy

of EBprot = −6.9489 · 10−14 J = −0.43371 MeV , and for the neutron n+ = 919 and

n− = 919 with a binding Energy of EBneutr = 5.59743 · 10−14 J = 0.34936MeV .

The dHn field is generated by the orbital electron and the interacting positron of

the nucleus that follows the orbital electron. The two opposed currents generate a dHn
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field equal to the field of a bar magnet as shown in Fig. 144 b).

The neutral atoms used in the Stern-Gerlach experiment have all complete shells

plus one electron of the next shell, which is not unbound, because it interacts with one

positron of the nucleus which follows him. The configuration of the Ag is [Kr]4d105s1.

30.2 The splitting of energy levels at the hydrogen atom.

The proposed approach represents electrons and positrons as focal points of rays of FPs

that move from infinite to infinite with light speed and infinite speed. FPs are emitted

by focal points and at the same time, FPs emitted by other focal points regenerate

them. Focal points that emit FPS with light speed are regenerated by FPs with infinite

speed and vice versa. At the focal point the speed of the FPs changes.

We start with (1115)

E = − Ku

r′
[
n2 + l

α
+ k π

α ln r
ru

] (1144)

with

Ku =
e2

4π ϵo
Ku = α ℏ c (1145)

The energy E is defined by three quantum numbers, namely n, l and k. The term

in the denominator that is associated with the intrinsic spin of the orbital electron,

namely

k π

α ln r
ru

≈ 1

α

1

2
k =

4 π ϵo
e2

ℏ c
1

2
k k = 0,±1,±2,±3, · · · (1146)

is a function of the product of the charge of the hydrogen nucleus e and the charge

of the orbital electron e, and a function of the integration limits r and ru, what shows,

that the above term is not the product of an intrinsic spin of the orbital electron. It is

given by the interaction between nucleus and orbital electron, the same as the orbital

angular momentum.

31 Radiation of accelerated particles.

Experience shows that all accelerated charged particles emit energy as electromagnetic

radiation. The stability of orbital electrons, which are radially accelerated, is explained

with the quantization of the energy levels of orbital electrons.
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The present approach explains the origin of energy levels of orbital electrons with

the number of positrons of the nucleus that interact with the orbital electron. In

other words, the linear superposition of potential fields of positrons, leaving open the

question of stability of the radially accelerated orbital electrons.

The E&R model represents subatomic particles (SPs) as focal points of rays of

Fundamental Particles (FPs) that move from infinity to infinity. FPs have longitudinal

and transversal angular momenta where the energy of the SP is stored. FPs are emitted

by the focal point and at the same time regenerate the focal point. Regenerating FPs

are those FPs that were emitted previously by external subatomic particles. Because

of the energy conservation principle, the current of emitted FPs must be equal to the

current of regenerating FPs. SPs interact through the cross product of the angular

momenta of their FPs.

The regenerating FPs of a SP are activated by their emitted FPs when they arrive

to external SPs. There is a time delay between the emitted FP and the arrival of the

regenerating FP that was activated by the first. The emitted FP takes with it the

information of the location of the focal point from which it was emitted. The informa-

tion is stored in the direction of the longitudinal angular momenta. This information

is transmitted to the regenerating FP when activated, and allows that the regenerating

FP meets the focal point.

At SPs that are at rest or move with constant speed, the externally activated

regenerating FPs meet the focal point. At SPs that are accelerated, the externally

activated regenerating FPs fail the focal point, because of the acceleration during the

time delay. The regenerating FPs that fail the focal point move then independent from

the focal point as radiated photons or neutrinos.

In the case of the orbital electron with its radial acceleration, the regenerating FPs

don’t fail the electron because of the small radius of the orbit. It is equivalent to a

resting electron for all external SPs where the regenerating FPs are activated. Because

of the small energy of the orbital electron the uncertainty principle between energy and

space includes the orbit of the electron.

(∆E) · (∆x) ≥ 1

2
ℏ c (1147)

Example: The energy of the orbital electron of the hydrogen atom with l = 0 is

Ee = 3.4250 · 10−18 J which gives an uncertainty of ∆x = 4.6182 · 10−9 m which is

grater than the diameter of the atom with approximately 2 ao = 1.0584 · 10−10 m.
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32 Stable and unstable particles.

Particles in the SM are classified as Gauge Bosons, Leptons, Quarks, Baryons and

Mesons. The classification makes no difference between stable and unstable particles.

Unstable particles with energies much grater than the energies of the stable electron

(0.511MeV/c2), positron or neutrino are defined as Basic Subatomic Particles (BSPs),

violating the concept of basic particles which must be the constituents of all not basic

particles. The result is the search for basic particles like the unstable Quarks with

energies above 0.35 GeV/c2.

The approach “Emission and Regeneration” UFT

1. defines as BSPs the electron, positron and the neutrino which are stable particles,

and defines all particles with higher energies, stable or unstable, as Composed

Subatomic Particles (CSPs) which are integrated by BSPs.

2. defines electrons and positrons as focal points of rays of Fundamental Particles

(FPs) which go from infinite to infinite and have longitudinal and transversal

angular momenta. Interactions between electrons and positrons are the result

of the interactions of the angular momenta of their FPs. No carrier bosons are

required to describe interactions between subatomic particles.

3. defines neutrinos as pairs of FPs with opposed angular momenta which generate

linear momenta, and photons as a sequence of pairs of FPs with opposed angular

momenta that generate a sequence of opposed linear momenta.

4. shows that no strong forces are required to hold electrons and positrons together,

which are the constituents of protons and neutrons. The forces between the

constituents electrons and positrons tend to zero for the distance between them

tending to zero.

5. shows that weak forces which are responsible for the decay of atomic nuclei are

electromagnetic forces.

6. shows that gravitation forces are also electromagnetic forces.

The conclusion is, that all interactions between subatomic particles are electromag-

netic interactions and described by QED. Interactions as described by QCD are simply

the product of the primitive definition of particles as point-like entities which require

carriers to explain their interactions.
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32.1 The potentials of the four interactions.

Our SM differentiates between the following potentials to explain interactions between

particles.

• Strong

• Weak

• Gravitation

• Electromagnetic

In sec. 4 the momentum curve between two static charged BSAs (electron/positron)

was derived resulting Fig. 145 and the following regions were defined:

1. From 0 ≪ γ ≪ 0.1 where pstat = 0

2. From 0.1 ≪ γ ≪ 1.8 where pstat ∝ d 2

3. From 1.8 ≪ γ ≪ 2.1 where pstat ≈ constant

4. From 2.1 ≪ γ ≪ 518 where pstat ∝ 1
d

5. From 518 ≪ γ ≪ ∞ where pstat ∝ 1
d 2 (Coulomb)

The static momentum curve of Fig. 145 is part of the potential well of an atomic

nucleus as shown in Fig. 146, which can be approximated by a piecewise constant

potential for the analytical analysis in quantum mechanics.

The force on electrons or positrons that move in the defined regions of the potential

well is given by the following equations derived in sec. 7:

dF̄in =
1

8 π

√
mp rop rot

d

dt

∫ ∞

rr

dH̄n with (1148)

d

dt

∫ ∞

rr

¯dHn =
1

2

d

dt
[Hn]

ro
rr

sinφ dφ s̄γ − Hn v
ro
r2r

sinφ cosφ dφ s̄γ (1149)

+
1

2
Hn

1

rr
sinφ dφ

dro
dt

s̄γ

For the regions we have that:

• BSPs that are in region 1 don’t attract nor repel each other. The static force is

zero and no binding Gluons nor strong forces to hold them together are needed.
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• BSPs that have migrated slowly from region 1 to region 2 where the potential

groves approximately with d2, are accelerated to or away from the potential wall

by the static force according the charge of the particle and the charge of the

remaining particles in region 1. We can differentiate between:

– BSPs that are accelerated away from the potential wall (region 3) induce on

BSPs of other atoms the gravitation force. The accelerated BSPs transmit

their acquired momentum to BSPs of other atoms (induction) and stop their

movement immediately according the conservation law of momentum. The

force on accelerated BSPs is given with d
dt
[Hn] =

√
mdv

dt
.

– BSPs that are accelerated to the potential wall may tunnel the wall what

results in the decay of the atom with the corresponding radiations. No

special weak force is required.

• BSPs in the region 5 where the Coulomb force exists, orbit around the atom

nucleus. This is called in the SM the electromagnetic force.

The “Emission & Regeneration” UFT approach shows that all forces are derived

from one Field, the dH field. It also shows that all interactions are of electromagnetic

type and described by QEDs (Quantum Electrodynamics) and that no other type of
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interactions are required. It shows that all particles are composed of electrons, positrons

and neutrinos and that particles of very short lifetime are composed particles.
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33 Compatibility of gravitation with Quantum me-

chanics.

The potential in which an orbital electron in an Hidrogen atom with Z = 1 moves is

U(r)Coul = −
(
Z e2

4πϵo

)
1

r
= 2.3072 · 10−28 1

r
J with Z = 1 (1150)

We know from [5] page 178 that the discrete energy levels for the orbital electron

of the H-atom is

EnCoul
= − m

2ℏ2

(
Z e2

4πϵo

)2
1

n2
= 2.1819 · 10−18 1

n2
J (1151)

The difference between the energy levels is

∆EnCoul
= 2.1819 · 10−18

[
1

n2
1

− 1

n2
2

]
J (1152)

33.1 Quantized gravitation.

In the present approach of “Emission & Regeneration” UFT gravitation is presented

based on the reintegration of migrated electrons and positrons to their nuclei. Ac-

cording to that model the force on one electron/positron of a mass M1 due to the

reintegration of an electron/positron to an atomic nucleus of a mass M2 is given by

Fi =
dp

∆t
=

k c
√
m

√
mp

4 K d 2

∫ ∫
Induction

with

∫ ∫
Induction

= 2.4662 (1153)

and the corresponding potential is

U(r)Grav =

(
2.4662

k c
√
m

√
mp

4 K

)
1

r
= 2.3071 · 10−28 1

r
J (1154)

If we write the Schroedinger equation with the gravitation potential instead of the

Coulomb potential for the H-atom, we get discrete energy levels simply in replacing

the expression in brackets of eq.(1151) with the expression in brackets of eq. (1154)

EnGrav
= − m

2ℏ2

(
2.4662

k c
√
m

√
mp

4 K

)
1

n2
= 2.1816 · 10−18 1

n2
J (1155)

In the same model of gravitation the number of reintegrating electrons/positrons

for a mass M is derived as ∆G = γG M with γG = 5.3779 · 108 kg−1. The resulting

energy level due to all reintegrating electrons/positrons of M1 and M2 is
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EnGrav tot
= 2.1816 · 10−18 ∆G1 ∆G2

1

n2
J (1156)

For the H-Atom M2 is formed by one proton composed of 918 electrons and 919

positrons and M1 is the mass of the electron. The mass of a proton is M2 = mprot =

1.6726 · 10−27 kg and the mass of the electron M1 = melec = 9.1094 · 10−31 kg . We get

∆G2 = 8.9951 · 10−19 and ∆G1 = 4.8989 · 10−22. We get for the energy difference for

orbital electrons at the H-Atom due to gravitation potential

∆EnProton
= 9.6134 · 10−58

[
1

n2
1

− 1

n2
2

]
J (1157)

If we compare the factors of the brackets for the energy difference due to the

Coulomb potential of eq. (1152) and the gravitational potential of eq. (1157), we

see that even between very different energy levels n1 and n2 of the gravitational levels

the energy differences of the gravitation are neglectible compared with the Coulomb.

For the energy difference between two levels n1 and n2 of an atom we can write:

∆EnCoul
±∆EnGrav

= h(ν±∆ν) = 2.1819·10−18 [1±∆G1 ∆G2]

[
1

n2
1

− 1

n2
2

]
J (1158)

with ∆G = γG M where γG = 5.3779 · 108 kg−1.

Now we make the same calculations for the difference between the energy levels

due to the gravitation potential of the sun with M2 = M⊙ = 1.9891 · 1030 kg and

the earth with M1 = M† = 5.9736 · 1024 kg. We we get ∆G⊙ = 1.0697 · 1039 and

∆G† = 3.2125 · 1033 resulting

∆En⊙,† = 7.4968 · 1054
[
1

n2
1

− 1

n2
2

]
J (1159)

As the earth shows no quantization in its orbit around the sun, two adjacent levels

n1 and n2 must be very large outer levels so that ∆En⊙,† ≈ 0, similar to the large

outer levels of the conducting electrons of conducting materials. Mathematically we

can write with n2 = n1 + 1

lim
n1⇒∞

∆En⊙,† = 7.4968 · 1054
[
1

n2
1

− 1

(n1 + 1)2

]
= 0 J (1160)

33.2 Relation between energy levels and space.

The compatibility of gravitation as the reintegration of migrated electrons/positrons

to their nuclei is also shown by the following calculations. From eq. (1156) we get the

energy difference between two gravitation levels
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∆EnGrav
= 2.1816 · 10−18 ∆G1 ∆G2

[
1

n2
1

− 1

n2
2

]
J (1161)

and with the difference between two gravitation potentials at different distances

∆UGrav = G M1 M2

[
1

r1
− 1

r2

]
J (1162)

we can write that ∆EnGrav
= ∆UGrav what gives with r1 r2 ≈ r2

∆r

r2
=

2.1816 · 10−18 γ2G
G

[
1

n2
1

− 1

n2
2

]
(1163)

For the H-atom with r ≈ 10−13 m we get for the difference between the two first

energy levels n1 = 1 and n2 = 2

∆r =
2.1816 · 10−18 γ2G

G
r2

[
3

4

]
= 7.0926 · 10−17 m (1164)

what is a reasonable result because ∆r << r.

Now we make the same calculations for the earth and the sun with r⊙,† ≈ 150.00 ·
109 m. We get

∆r⊙,† = 2.1164 · 1032
[
1

n2
1

− 1

n2
2

]
(1165)

As the earth shows no quantization in its orbit around the sun, two adjacent levels

n1 and n2 must be very large outer levels so that ∆r⊙,† ≈ 0, similar to the large outer

levels of the conducting electrons of conducting materials.

33.3 Superposition of gravitation and Coulomb forces.

The “Emission & Regeneration” UFT shows that the Coulomb and the Ampere forces

tend to zero for the distance between electrons/positrons tending to zero. The be-

haviour is explained with the cross product of the angular momenta of the regenerating

rays of FPs that tends to zero.

The induction force is not a function of the cross product but simply the prod-

uct between angular momenta of the regenerating rays of FPs. The result is that the

induction force does not tend to zero with the distance between inducing particles

tending to zero. As the gravitation was defined as the reintegration of migrated elec-

trons/positrons to their nuclei and as a induction force, the gravitation force prevails

over the Coulomb or Ampere forces for the distance tending to zero.

Fig. 147 shows qualitatively the resulting momentum due to Coulomb/Ampere and

Gravitation momenta between an atomic nucleus of a target and a He nucleus.

327



 

0

p

nGravitatiop

sultpRe

R
r

2r  µ

r

1
   µ

2r

1
   µAmpCoulp /

2r

1
   µ

nGravitatioCoul/AmpResult ppp +±=

Figure 147: Resulting linear momentum p due to Coulomb/Ampere and Gravitation
momenta.

Note: The gravitation model of “Emission & Regeneration” UFT is based on a

physical approach of reintegration of migrated electrons/positrons to their nuclei and

compatible with quantum mechanics, while General Relativity, the gravitation model of

the SM, based on a mathematical-geometric approach is not compatible with quantum

mechanics.

34 Table comparing the SM and the ’E & R’ model.
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SM

E & R

Particle
representation

Force
Carriers Interactions Gauges

Point-
like

Wave
Packet

Focal-point
 of rays of
Fundamental
Particles

Wave
Packet

Gluons
W-Boson
Photons
Gravitons

Strong
Weak
Electromagnetic
Gravitation

Fields

Strong
Weak
Electromagnetic
Gravitation

dH field with
Longitudinal
and 
Transversal
components

Fundamental
Particle with
Longitudinal
and 
Transversal
angular 
momenta

QCD
Electroweak
QED
Gravity Duality

QED

Comment

One field
for all
forces

(Poly-particle)

Model

(Mono-particle)

QM

QM

Classic

Classic

Sub-
division

Four fields,
one for 
each type 
of force

(Long x Long,
Trans x Trans,
Trans - Long) 

Electromagnetic

Figure 148: Table comparing the SM and the ’E & R’ model.

Fig. 148 shows the SM and the ’E & R’ model subdivided in classical physics and

QM. The classic part of the SM with its point-like representation of particles has four

force-carriers, four fields and four interactions. QM based on the classical physics of

the SM has correspondingly four gauge theories.

The classic part of the ’E & R’ model with its focal-point representation of particles

has only one type of force-carrier, only one field and only one type of interaction. QM

based on the classical physics of the ’E & R’ model has correspondingly only one type

of gauge theory, namely QED.

The SM has four fields one for each type of force while the ’E & R’ model has only

one field for all forces and is therfore a UFT.

The SM is a poly-particle model while the ’E & R’ model is a mono-particle model.
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35 Spin, magnetic moment and photon.

35.1 The spin.

According the E&R model, electrons and positrons are composed of Fundamental Par-

ticles (FPs) which have an energy defined by

EFP = hνo (1166)

with νo a universal frequency.

The energy of an electron or positron can thus be expressed as

Ee = Ne EFP Ne =
Ee
EFP

=

√
E2
o + E2

p

EFP
=
Es + En
EFP

(1167)

where Ne is the number of FPs that composes the electron or positron. For the non

relativistic case we have

Ne =
Ee
EFP

=
Es + En
EFP

=
1

EFP
[Eo + pc] (1168)

An orbital electron interacts with the nucleus and has an orbital moment given by

L = me ρ vt = ρ vt Ne
EFP
c2

me =
Ee
c2

= Ne
EFP
c2

(1169)

where ρ is the radius of the orbit and vt the tangential speed.

As the nucleus of the atom is also composed of electrons and positrons which are

composed of FPs, the orbital electron can pass or receive FPs from the nucleus. The

number of FPs of the orbital electron can thus vary between

N = Ne ± ∆Ne with ∆Ne = 0, 1, 2, 3, · · · (1170)

We get for the total angular moment of an orbital electron for the case of N =

Ne ± 1

J⃗ = me ρ⃗× v⃗t =
νo
c2

[Ne h ± h] ρ⃗× v⃗t = L⃗ ± S⃗ (1171)

where L is the orbital angular moment and S is the spin of the electron.

The quantum number ∆Ne = 0, 1, 2, 3, · · · gives the number of FPs at which the

orbital electron is increased or decreased.

Equation (1171) includes the relativistic mass increase due to the definition of the

mass as

me =
Ee
c2

= Ne
EFP
c2

= Ne
h νo
c2

(1172)
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Note: According to the shell structure of the Ag atom the individual electron

carries no angular momentum and L⃗ = 0. That is because there is no moment of

inertia and that the area vector of the orbit aligns immediately parallel to the external

magnetic field. According to the E&R model the energy variation at the electrons is

due to the variation of the number of FPs given by ±∆Ne. For the special case of

L⃗ = 0 only a variation −∆Ne is possible. The variation of the number of FPs produces

a variation of the mass of the electron and consequently a variation of the kinetic

energy.

The splitting of the energy level is the product of the interactions between sub-

atomic particles. There is no need to introduce the postulate of S.Goudsmit and

G.E.Uhlenbeck.

35.2 The magnetic moment.

The energy of FPs are stored in the angular momentum h⃗ what generates a magnetic

momentum in an external magnetic field.

The charge qFP and the mass mFP of a FP is given with

qFP =
e

Ne

= e
EFP
Ee

mFP =
me

Ne

= me
EFP
Ee

(1173)

The magnetic moment of a FP is defined as

µ⃗FP = − qFP
2 mFP

h⃗ = − Ne qFP
2 Ne mFP

h⃗ = − e

2 me

h⃗ = µ⃗B (1174)

where µ⃗B is the Bohr magneton.

The potential magnetic energy is defined as

Hmag = − µ⃗ B⃗ (1175)

with

µ⃗ = − gl µB
l⃗

h
(1176)

where l⃗ is the orbital angular moment.

35.3 The photon.

The photon is defined in the E&R model as a sequence of FPs with opposed angular

momenta. The energy of a photon expressed as a function of the energy of a FP is

Eph = Nph EFP EFP = h νo (1177)
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where Nph is the number of FPs that integrates the photon. With Eph = h ν we

get

Nph =
ν

νo
=

c

λ νo
νλ = c (1178)

If we take the Hyperfine-shift of ν = 1.42 MHz. for n = 1 between F = 1 and

F = 0 as caused by one FP, so that νo = 1.42MHz., we get that the energy of a FP is

EFP = h νo = 5.88 · 10−9 eV with νo = 1.42MHz (1179)

36 Summery of main characteristics and conclu-

sions of the proposed model.

The following abbreviations are used:

1. Basic Subatomic Particles (BSPs) are electrons, positrons and neutrinos.

2. Subatomic Particles (SPs)

3. Fundamental Particles (FPs)

The main characteristics of the proposed model are:

• Subatomic particles (SPs) are represented as focal points of rays of Fundamental

Particles (FPs) that go from infinite to infinite. FPs store the energy of the SPs

as rotation defining longitudinal and transversal angular momenta.

• FPs are emitted at the focal point and regenerate the focal point. Regenerating

FPs are the FPs that were emitted by other focal points in space.

• The charge of a SP is defined by the rotation sense of the longitudinal angular

momenta of the emitted FPs.

• The interacting particles for all types of interactions (electromagnetic, strong,

weak, gravitation) are the FPs with their longitudinal and transversal angular

momenta.

• All known forces are derived from one vector field generated by the longitudinal

and transversal angular momenta of fundamental particles.

• All the basic laws of physics (Coulomb, Ampere, Lorentz, Maxwell, Gravitation,

bending of particles and interference of photons, Bragg, Schroedinger) are math-

ematically derived from the proposed model, making sure that the approach is

in accordance with experimental data.

332



• Electrons and positrons neither attract nor repel each other for the distance

between them tending to zero. Nucleons are interpreted as swarms of electrons

and positrons.

• The coexistence of protons in the atomic nucleus does not require the definition

of a special strong force nor additional mediating particles (gluons).

• Quarks are composed of electrons and positrons and the charge Q is the relation

between the difference of positrons and electrons of the quark and the total

number of electrons and positrons. Q is the relative charge of the quark.

• The emission of particles from a heavy atomic nucleus does not require the defi-

nition of a special weak force nor additional mediating particles.

• Gravitation has its origin in the linear momenta induced by the reintegration of

migrated electrons and positrons to their nuclei. No special mediating particles

are required (gravitons).

• The gravitation force is composed of an induced Newton component and an Am-

pere component due to parallel currents of reintegrating electrons and positrons.

For galactic distances the induced component can be neglected. A positive Am-

pere component explains the flattening of galaxies’ rotation curve (no dark matter

is required) and a negative Ampere component explains the expansion of galaxies

(no dark energy is required).

• The inertia of particles is explained with the time delay between the emission

and the regeneration of FPs. No special mediating particles are required.

• Permanent magnets are explained with the synchronization along a closed path

of reintegrating BSPs to their nuclei.

• The two possible states (spins) in one energy level of orbiting electrons are re-

placed by the two types of electrons defined in the present theory, namely the

accelerating and decelerating electrons.

• The splitting of the atomic beam in the Stern-Gerlach experiment is explained

with the magnetic field generated by the parallel currents composed of the orbital

electron and the current induced in the atomic nucleus. The magnetic spin is not

an intrinsic characteristic of the electron.

• Relativity deduced on speed variables instead of space-time variables gives the

same equations as special relativity but without the fictitious concepts of time

dilation and length contraction. The transversal Doppler effect, which was never

experimentally detected, doesn’t appear.
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• The wave character of the photon is defined as a sequence of FPs with opposed

transversal angular momenta which carry opposed transversal linear momenta.

• Light that moves trough a gravitation field can only lose energy, what explains

the red shift of light from far galaxies (no expansion of the universe is required).

• Diffraction of particles such as the Bragg diffraction of electrons is now the result

of the quantized interaction of parallel currents.

• As the model relies on BSPs permitting the transmission of linear momenta at

infinite speed via FPs, it is possible to explain that entangled photons show no

time delay when they change their state.

• The addition of a wave to a particle (de Broglie) is effectively replaced by a

relation between the particles radius and its energy.

• The Schroedinger equation is replaced by an equation where the wave function is

derived one time versus space and two times versus time in analogy to Newton’s

second law.

• The uncertainty relation of quantum mechanics derived with the new wave func-

tion forms pairs of canonical conjugated variables between ”energy and space”

and ”momentum and time”.

• The time independent Schroedinger equation results deriving the new wave func-

tion two times versus space, the same as for the established wave function.

• The new quantum mechanics theory, based on wave functions derived from the

radius-energy relation, is in accordance with the quantum mechanics based on

the correspondence principle.

• All interactions are of electromagnetic type and described by QEDs (Quantum

Electrodynamics) and no other type of interactions are required.

• The gravitation of the present approach “Emission & Regeneration” UFT is com-

patible with quantum mechanics, what is not the case with General Relativity,

which is the gravitation model of the SM.

• Finally the hypothesis is made that the apparent CMB radiation is a gravitational

effect between the mass of the satellite and the signal evaluating part of the

satellite, what would explaining the isotropy of the radiation.
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